Development of fast image reconstruction technique for CT image using active nonlinear dynamics of iterative method
基于迭代法的主动非线性动力学CT图像快速图像重建技术的发展
基本信息
- 批准号:18560412
- 负责人:
- 金额:$ 1.16万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2006
- 资助国家:日本
- 起止时间:2006 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Iterative reconstruction is a well known method of reconstructing computed tomography (CT) images, and it has advantages over the filtered back-projection procedure, which is commonly used for CT reconstruction in medical practices, in reducing artifacts. Because of the high quality of these reconstructions, a lot of research has been done on improving the iterative deblurring procedures. Of the iterative reconstruction algorithms, the power multiplicative algebraic reconstruction technique (PMART) has good properties for maximizing entropy ; however, it requires a large number of iterations to obtain the final reconstructed image for large data sets.The final reconstructed image obtained by applying an iterative reconstruction algorithm for appropriate initial pixel values corresponds to a fixed or periodic point observed in the dynamical system describing the iterative reconstruction technique. Our bifurcation analysis of PMART with multiple pixels enabled us to observe various kinds … More of nonlinear phenomena such as the coexistence of a false image, the transition of stability of fixed points, and the generation of a two-periodic point, by changing one of the system parameters. The results also suggest appropriate parameter regions and phantom-image values within the PMART can operate normally.To improve the speed of convergence, we propose an extended PMART, which is a dynamical class that includes the multiplicative algebraic reconstruction technique (MART) as well as PMART. The process of convergence for iterative points in the neighborhood of a reconstructed image can be reduced to the property of the characteristic multiplier of a stable fixed point observed in the dynamical system. To investigate the behavior of convergence, we present a computational method of obtaining parameter sets in which the given real or absolute values of the characteristic multiplier are equal. The advantage of the extended PMART is verified by comparing it with the standard MART using numerical experiments. Less
迭代重建是一种众所周知的重建计算机断层扫描 (CT) 图像的方法,与医疗实践中常用于 CT 重建的滤波反投影程序相比,它在减少伪影方面具有优势。由于这些重建的高质量,人们在改进迭代去模糊过程方面进行了大量的研究。在迭代重建算法中,幂乘代数重建技术(PMART)具有良好的熵最大化特性;然而,对于大数据集,它需要大量的迭代才能获得最终的重建图像。通过对适当的初始像素值应用迭代重建算法获得的最终重建图像对应于描述迭代重建技术的动态系统中观察到的固定或周期点。我们对多像素 PMART 的分岔分析使我们能够通过改变系统参数之一来观察各种非线性现象,例如假图像的共存、不动点稳定性的转变以及二周期点的生成。结果还表明,PMART 内适当的参数区域和幻影图像值可以正常运行。 为了提高收敛速度,我们提出了一种扩展的 PMART,它是一个动态类,包括乘法代数重建技术 (MART) 以及 PMART。重建图像邻域内迭代点的收敛过程可以简化为动态系统中观察到的稳定不动点的特征乘数的性质。为了研究收敛行为,我们提出了一种获取参数集的计算方法,其中特征乘数的给定实数或绝对值相等。通过数值实验将扩展PMART与标准MART进行比较,验证了扩展PMART的优势。较少的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bifurcation structure of successive torus doubling
- DOI:10.1016/j.physleta.2005.08.089
- 发表时间:2006-01
- 期刊:
- 影响因子:2.6
- 作者:M. Sekikawa;N. Inaba;T. Yoshinaga;T. Tsubouchi
- 通讯作者:M. Sekikawa;N. Inaba;T. Yoshinaga;T. Tsubouchi
Bifurcations in a mathematical model for circadian oscillations of clock genes.
- DOI:10.1016/j.jtbi.2005.07.017
- 发表时间:2006-03
- 期刊:
- 影响因子:2
- 作者:K. Tsumoto;T. Yoshinaga;Hitoshi Iida;H. Kawakami;K. Aihara
- 通讯作者:K. Tsumoto;T. Yoshinaga;Hitoshi Iida;H. Kawakami;K. Aihara
画像領域分割の改良を目的としたシナプス結合振動子ネットワークにみられる分岐
在突触耦合振荡器网络中发现分支以改善图像分割
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Tetsuya;Yoshinaga;藤本憲市
- 通讯作者:藤本憲市
Dynamical property of periodic oscillations observed in a coupled neural oscillator network for image segmentation
用于图像分割的耦合神经振荡器网络中观察到的周期性振荡的动态特性
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Ken'ichi;Fujimoto;藤本 憲市;Kunichika Tsumoto;Sekikawa Munehisa;Kunichika Tsumoto;Tetsuya Yoshinaga
- 通讯作者:Tetsuya Yoshinaga
Bifurcations in Morris-Lecar neuron model
- DOI:10.1016/j.neucom.2005.03.006
- 发表时间:2006-01-01
- 期刊:
- 影响因子:6
- 作者:Tsumoto, K;Kitajima, H;Kawakami, H
- 通讯作者:Kawakami, H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YOSHINAGA Tetsuya其他文献
YOSHINAGA Tetsuya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YOSHINAGA Tetsuya', 18)}}的其他基金
Development of intensity-modulated radiation therapy treatment planning by actively utilizing nonlinear dynamics
积极利用非线性动力学制定调强放射治疗治疗计划
- 批准号:
18K04169 - 财政年份:2018
- 资助金额:
$ 1.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of intensity-modulated radiation therapy treatment planning based on dose-volume constraints
基于剂量体积限制的调强放射治疗治疗计划的制定
- 批准号:
15K06110 - 财政年份:2015
- 资助金额:
$ 1.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Continuous-Time Dynamical Reconstruction Method for High-Quality CT Image
高质量CT图像连续时间动态重建方法的发展
- 批准号:
21560449 - 财政年份:2009
- 资助金额:
$ 1.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction and Bifurcation Analysis in a Mathematical Model for Circadian Oscillations of Clock Genes
时钟基因昼夜节律振荡数学模型的构建和分岔分析
- 批准号:
16500132 - 财政年份:2004
- 资助金额:
$ 1.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Fast Iterative Method with Algebraic CT Image Reconstruction Technique Based on Dynamical System Theory
基于动力系统理论的代数CT图像重建技术的快速迭代方法
- 批准号:
14550420 - 财政年份:2002
- 资助金额:
$ 1.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
- 批准号:
EP/X039277/1 - 财政年份:2024
- 资助金额:
$ 1.16万 - 项目类别:
Research Grant
A New Computational Framework for Superior Image Reconstruction in Limited Data Quantitative Photoacoustic Tomography
有限数据定量光声断层扫描中卓越图像重建的新计算框架
- 批准号:
2309491 - 财政年份:2023
- 资助金额:
$ 1.16万 - 项目类别:
Standard Grant
Self-supervised deep-learned physics-informed PET image reconstruction for oncology
用于肿瘤学的自监督深度学习物理学 PET 图像重建
- 批准号:
2886561 - 财政年份:2023
- 资助金额:
$ 1.16万 - 项目类别:
Studentship
High Accuracy Image Reconstruction Using Microwave Measurements from Bio-Matched Antennas and Deep Learning: A Synthesized X-ray Computed Tomography Approach
使用生物匹配天线和深度学习的微波测量进行高精度图像重建:一种合成 X 射线计算机断层扫描方法
- 批准号:
2244882 - 财政年份:2023
- 资助金额:
$ 1.16万 - 项目类别:
Standard Grant
Data driven inversion methods and image reconstruction for nonlinear media
非线性介质的数据驱动反演方法和图像重建
- 批准号:
2308200 - 财政年份:2023
- 资助金额:
$ 1.16万 - 项目类别:
Standard Grant
Radiation propagation modelling and image reconstruction for X-ray time-of-flight computed tomography
X 射线飞行时间计算机断层扫描的辐射传播建模和图像重建
- 批准号:
RGPIN-2021-03858 - 财政年份:2022
- 资助金额:
$ 1.16万 - 项目类别:
Discovery Grants Program - Individual
Machine learning augmented hierarchical tomographic image reconstruction of human organs
机器学习增强人体器官分层断层图像重建
- 批准号:
2720289 - 财政年份:2022
- 资助金额:
$ 1.16万 - 项目类别:
Studentship
Improving the Signal Model in Radar-based Image Reconstruction and a Novel Machine Learning Approach for Breast Microwave Imaging
改进基于雷达的图像重建中的信号模型以及乳腺微波成像的新型机器学习方法
- 批准号:
547670-2020 - 财政年份:2022
- 资助金额:
$ 1.16万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Signal Processing and Interpretable Deep Network for Image Reconstruction
用于图像重建的信号处理和可解释深度网络
- 批准号:
2784995 - 财政年份:2022
- 资助金额:
$ 1.16万 - 项目类别:
Studentship














{{item.name}}会员




