Development of the algorithm for quantitative neuroreceptor imaging using PET without serial arterial blood sampling and reference region

开发使用 PET 进行定量神经感受器成像的算法,无需连续动脉血采样和参考区域

基本信息

项目摘要

This study aims at developing algorithms for fully quantitative neuroreceptor imaging using PET without serial arterial blood sampling and reference regions. For omission of serial arterial blood sampling, variational Bayesian approach and an intersectional searching approach were investigated based on Logan graphical analysis (LGA). As a result, dynamic studies using FDG, MPDX and TMSX were accomplished without serial arterial blood sampling. The variational Bayesian approach introduces nonnegative constraints to an algorithm based on independent component analysis which has been developed by my group. The approaches improved an estimation performance of a time history of radioactivity in arterial blood (pTAC), and it made an estimated blood volume image, which was another outcome of the algorithm, physiologically reliable. Other algorithm based on LGA is to estimate pTAC using the operational equation of LGA, for which the terms including pTAC were canceled out using pTAC is common among regions. This algorithm was sensitive for noise in PET data due to its mathematical framework. In order to realize reliable pTAC estimation, some data preprocessing procedures were developed using clustering based on a kinetics of administered radiopharmaceutical For the omission of reference region, a feasibility of voxel-based compartment model analysis was investigated. However, it was not practical due to bad noise statistics in voxel-based PET data. Then, total distribution volumes (VT) was estimated for each voxels to decrease the number of estimated rate constants using LGA. The VT estimates by LGA is underestimated under the existence of large noise in PET data. MAP based estimation approach was incorporated with LGA, and fast and statistically reliable voxel-based VT estimation was archived.
本研究的目的是开发算法,完全定量神经受体成像使用PET没有连续动脉血液采样和参考区域。针对连续动脉血样本的遗漏,基于Logan图分析(LGA),研究了变分贝叶斯方法和交叉搜索方法。因此,使用FDG、MPDX和TMSX的动态研究无需连续动脉血液采样即可完成。变分贝叶斯方法引入了非负约束的算法的基础上独立成分分析,这已经开发了我的小组。该方法改善了动脉血中放射性时间历程(pTAC)的估计性能,并且其使得作为算法的另一结果的估计血容量图像在生理上可靠。基于LGA的其他算法是使用LGA的运算方程来估计pTAC,其中包括pTAC的项被使用pTAC在区域之间是共同的来抵消。由于其数学框架,该算法对PET数据中的噪声敏感。为了实现可靠的pTAC估计,一些数据的预处理程序,使用聚类的基础上管理的放射性药物的动力学。为省略参考区域,基于体素的房室模型分析的可行性进行了研究。然而,由于基于体素的PET数据中的不良噪声统计,这是不实用的。然后,估计每个体素的总分布体积(VT),以减少使用LGA估计的速率常数的数量。在PET数据中存在较大噪声的情况下,LGA估计的VT被低估。将基于MAP的估计方法与LGA相结合,实现了快速且统计可靠的基于体素的VT估计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Voxel-by-voxel compartment a nalysis using clustering kinetic approach for PET applying to P-glycoprotein functional imaging
使用聚类动力学方法对 PET 进行逐体素区室分析,应用于 P-糖蛋白功能成像
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y Kimura;M Naganawa;et. al.
  • 通讯作者:
    et. al.
Time and Spatial bllod information estimationusing Bayesian ICA in dynamic cerebral positron emission tomography
动态脑正电子发射断层扫描中贝叶斯ICA的时间和空间血液信息估计
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M Naganawa;Y;Kimura;et. al.
  • 通讯作者:
    et. al.
Voxel-by-voxel compartment analysis using clustering kinetic approach for PET applying to P-glycoprotein functional imaging
使用聚类动力学方法对 PET 进行逐体素区室分析,应用于 P-糖蛋白功能成像
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y Kimura;M Naganawa;et. al.
  • 通讯作者:
    et. al.
Temporal and spatial blood information estimation using Bayesian ICA in dynamic cerebral positron emission tomography
  • DOI:
    10.1016/j.dsp.2007.03.002
  • 发表时间:
    2007-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Naganawa;Y. Kimura;K. Ishii;K. Oda;K. Ishiwata
  • 通讯作者:
    M. Naganawa;Y. Kimura;K. Ishii;K. Oda;K. Ishiwata
Distribution volume as an alternative to the binding potential for sigmal receptor imaging
分布体积作为信号受体成像结合潜力的替代方案
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y Kimura;M Naganawa;et. al.
  • 通讯作者:
    et. al.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KIMURA Yuichi其他文献

KIMURA Yuichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KIMURA Yuichi', 18)}}的其他基金

Molecular pathology analysis of two type epilepsy caused by KCNQ2
KCNQ2引起的两型癫痫的分子病理学分析
  • 批准号:
    19K17314
  • 财政年份:
    2019
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study on a planar array antenna on a broad wall of a rectangular waveguide for linear polarization parallel to the axis
矩形波导宽壁平行轴线极化平面阵列天线研究
  • 批准号:
    15K06051
  • 财政年份:
    2015
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Jacob Viner's Economic Thought: Mild Liberalist
雅各布·维纳的经济思想:温和自由主义者
  • 批准号:
    15K03378
  • 财政年份:
    2015
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of automated blood sampling in uL order, metabolite analysis, and an algorithm for noise reduction for quantitative PET molecular imaging using PET
开发 uL 级自动血液采样、代谢物分析以及使用 PET 进行定量 PET 分子成像的降噪算法
  • 批准号:
    24591805
  • 财政年份:
    2012
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nicholas Kaldor's economic thought: his vision of democratic socialism
尼古拉斯·卡尔多的经济思想:他的民主社会主义愿景
  • 批准号:
    23730205
  • 财政年份:
    2011
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Usefulness on detection of intracanal microbe with photodynamic agent and laser
光动力剂和激光检测根管内微生物的有用性
  • 批准号:
    23592805
  • 财政年份:
    2011
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Compulsory schooling fee, schooling investments and income distribution : evidence from Vietnamese households
义务教育费用、教育投资和收入分配:来自越南家庭的证据
  • 批准号:
    22830055
  • 财政年份:
    2010
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Quantitative neuroreceptor imaging for mice using PET : development of micro litter ordered blood radioactivity counting system and the technique to omit arterial blood sampling
使用PET对小鼠进行定量神经感受器成像:微窝有序血液放射性计数系统的开发和省略动脉血取样的技术
  • 批准号:
    20390333
  • 财政年份:
    2008
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A study of high efficiency waveguide planar antenna with a slot array excited by perturbation elements
微扰元件激励缝隙阵列高效波导平面天线研究
  • 批准号:
    20760231
  • 财政年份:
    2008
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The Acceptance and evolution of economics in 1930's LSE
1930 年代伦敦经济学院对经济学的接受和演变
  • 批准号:
    19730151
  • 财政年份:
    2007
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)

相似海外基金

Real-time molecular-imaging guidance of breast conserving surgery
实时分子影像指导保乳手术
  • 批准号:
    478297
  • 财政年份:
    2023
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Operating Grants
Design and synthesis of shortwave-infrared (SWIR) fluorescent probes for specifically targeted molecular imaging of breast cancer.
设计和合成短波红外 (SWIR) 荧光探针,用于乳腺癌的特异性靶向分子成像。
  • 批准号:
    23K13851
  • 财政年份:
    2023
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Project 2 - Molecular Imaging of ectopic calcification
项目 2 - 异位钙化的分子成像
  • 批准号:
    10628929
  • 财政年份:
    2023
  • 资助金额:
    $ 2.53万
  • 项目类别:
B7-H3 Targeted Ultrasound Molecular Imaging System for Early Breast Cancer and Metastatic Detection
B7-H3 用于早期乳腺癌和转移检测的靶向超声分子成像系统
  • 批准号:
    10584161
  • 财政年份:
    2023
  • 资助金额:
    $ 2.53万
  • 项目类别:
Highly Sensitive Detection of Occult Pancreatic Cancer Using Intraoperative Molecular Imaging
使用术中分子成像高灵敏度检测隐匿性胰腺癌
  • 批准号:
    10660471
  • 财政年份:
    2023
  • 资助金额:
    $ 2.53万
  • 项目类别:
Non-invasive molecular imaging tool for rapid, longitudinal assessment of localized metabolic disruptions in animal research and care
非侵入性分子成像工具,用于快速纵向评估动物研究和护理中的局部代谢紊乱
  • 批准号:
    10602045
  • 财政年份:
    2023
  • 资助金额:
    $ 2.53万
  • 项目类别:
CAREER: MOEMS-based Head-mounted NIR-II Microscopy for Molecular Imaging of Brain Tumor in Freely Behaving Small Animal Models
职业:基于 MOEMS 的头戴式 NIR-II 显微镜,用于自由行为的小动物模型中脑肿瘤的分子成像
  • 批准号:
    2237142
  • 财政年份:
    2023
  • 资助金额:
    $ 2.53万
  • 项目类别:
    Continuing Grant
Multimodal Molecular Imaging of Choroidal Neovascularization
脉络膜新生血管的多模态分子成像
  • 批准号:
    10736104
  • 财政年份:
    2023
  • 资助金额:
    $ 2.53万
  • 项目类别:
Development of a combined Gamma/Positron system for molecular imaging of the human brain at sub-500 micron spatial resolution
开发伽玛/正电子组合系统,用于以亚 500 微米空间分辨率对人脑进行分子成像
  • 批准号:
    10722205
  • 财政年份:
    2023
  • 资助金额:
    $ 2.53万
  • 项目类别:
Molecular Imaging Biomedical Resource Core
分子成像生物医学资源核心
  • 批准号:
    10747619
  • 财政年份:
    2023
  • 资助金额:
    $ 2.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了