P3 - Fishbone: Bones without cells as blueprints for durable, cyclically loaded nanocomposites: how does anosteocytic fishbone cope with fatigue?

P3 - 鱼骨:没有细胞的骨头作为耐用、循环加载的纳米复合材料的蓝图:成骨细胞鱼骨如何应对疲劳?

基本信息

项目摘要

For mammalian bone, it is widely accepted that osteocyte cells sense strains and initiate remodelling and repair of fatigue-damage. But bone of advanced teleost fish lacks osteocytes. How do they sustain millions of loading cycles? This tough and fatigue resistant material presents an ideal role model for bioinspired composites.In this project we elucidate which structural entities on which length scales dominate fatigue resistance of anosteocytic fishbone and how they interact, in comparison with cellular fishbone. Composition, fibre orientation and porosity will be evaluated quantitatively by histology/materialography, with an emphasis on 3D high resolution investigations. A focus will be on identfying pre-existing micro-cracks, nano-/ microscale porosity, and nm-sized residual stresses. Finite element modelling, based on whole bone microcomputed tomography data, will help us, in synergy with strain data based on digital image correlation to better understand connections between geometry, macro-porosity, stress/strain distributions and in vivo loading conditions. We will transfer structural features identified as important for the fatigue resistance to organic-inorganic composites, while modifying their relative amount, across length scales and by combining different processing routes. This will involve understanding the impact of composite processing on the organic structure and the organic/inorganic interfaces. Composite fibers with nano- or microscale diameters (to investigate hierarchical structures) and different stiffness will be made by melt electrowriting (MEW), electrospinning, and their combination from natural or synthetic organic precursors. MEW scaffolds with different macro-geometries will be produced with/without hydroxyapatite (HA) nanoparticles to enhance fatigue properties, considering effects of anisotropy by using different crystal shapes. Sandwich structures will be obtained by supporting these macrostructures with nanofibers with/without incorporated HA nanoparticles. All structures will be investigated in terms of their physical and chemical properties. All tests are performed in simulated body fluid, considering viscoelastic deformation by holding times and frequency variations. Fatigue-induced structural changes will be investigated in 2D/3D, as for the unloaded state. From the viewpoint of a biological material with intermediate mineralization degree, we will contribute to the FOR by providing knowledge on how composition affects fatigue resistance, and how the nanocomposites can be tested with minimum of artefacts.
对于哺乳动物的骨,骨细胞感知应变并启动疲劳损伤的重塑和修复被广泛接受。但是,高级硬骨鱼的骨骼缺乏骨细胞。它们是如何承受数百万次装载循环的?这种坚韧和抗疲劳的材料提出了一个理想的角色模型bioinspired composites.In这个项目中,我们阐明了结构实体上的长度尺度占主导地位的抗疲劳性anosteocytic鱼骨和它们如何相互作用,与细胞鱼骨比较。将通过组织学/材相学定量评估成分、纤维取向和孔隙率,重点是3D高分辨率调查。一个重点将是识别预先存在的微裂纹,纳米/微米尺度的孔隙度,和纳米尺寸的残余应力。基于全骨显微计算机断层扫描数据的有限元建模将帮助我们与基于数字图像相关性的应变数据协同作用,以更好地了解几何形状、宏观孔隙率、应力/应变分布和体内载荷条件之间的联系。我们将转移的结构特征确定为重要的耐疲劳性的有机-无机复合材料,同时修改其相对量,跨长度尺度和结合不同的加工路线。这将涉及理解复合材料加工对有机结构和有机/无机界面的影响。具有纳米级或微米级直径(以研究分级结构)和不同刚度的复合纤维将通过熔融电写入(MEW)、静电纺丝及其组合由天然或合成有机前体制成。MEW支架具有不同的宏观几何形状将产生与/不与羟基磷灰石(HA)纳米粒子,以提高疲劳性能,考虑到各向异性的影响,通过使用不同的晶体形状。将通过用具有/不具有并入的HA纳米颗粒的纳米纤维支撑这些宏观结构来获得夹层结构。所有的结构都将在其物理和化学性质方面进行研究。所有测试均在模拟体液中进行,考虑到保持时间和频率变化引起的粘弹性变形。与未加载状态一样,将在2D/3D中研究重力引起的结构变化。从具有中等矿化度的生物材料的角度来看,我们将通过提供关于组成如何影响抗疲劳性的知识以及如何以最少的伪影测试纳米复合材料来为FOR做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Aldo Boccaccini其他文献

Professor Dr.-Ing. Aldo Boccaccini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Aldo Boccaccini', 18)}}的其他基金

Controllable dissolution of sol-gel derived borate glasses for accelerating wound healing
溶胶-凝胶衍生硼酸盐玻璃的可控溶解加速伤口愈合
  • 批准号:
    419186269
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ion-supplemented bioactive glass for the stimulation of bone formation in-vitro and in-vivo
用于刺激体外和体内骨形成的离子补充生物活性玻璃
  • 批准号:
    427136211
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Development of electrophoretic co-deposition of bioactive and antibacterial ceramics with biodegradable polymers to produce novel composite coatings for biomedical applications
开发生物活性抗菌陶瓷与可生物降解聚合物的电泳共沉积,以生产用于生物医学应用的新型复合涂层
  • 批准号:
    426494347
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Visualising the evolution of crystallisation and mineralisation of bioactive glasses
可视化生物活性玻璃的结晶和矿化的演变
  • 批准号:
    382920195
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Novel Si-O-M-C (M= Sr, Zn, and B) bioactive glasses with outstanding high temperature crystallization resistance
新型 Si-O-M-C(M= Sr、Zn 和 B)生物活性玻璃,具有出色的耐高温结晶性
  • 批准号:
    317658328
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Development of a cardiac patch based on a bilayer, conductive, biomimetic, polymeric scaffold
开发基于双层导电仿生聚合物支架的心脏补片
  • 批准号:
    290658671
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Development of endothelialised small diameter tissue-engineered grafts for cardiovascular surgery
用于心血管手术的内皮化小直径组织工程移植物的开发
  • 批准号:
    277253457
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Bio-adaptive Coatings on Mg alloys
镁合金生物适应性涂层
  • 批准号:
    263858005
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Additive manufacturing of bone replacement implants from crystallising bioactive glasses
利用结晶生物活性玻璃增材制造骨替代植入物
  • 批准号:
    435860394
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Osteogenic and angiogenic potential of mesoporous bioactive glass nanoparticles doped with molybdenum and boron
掺杂钼和硼的介孔生物活性玻璃纳米粒子的成骨和血管生成潜力
  • 批准号:
    493867610
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Stabilization of hazardous heavy metals in municipal solid waste incineration (MSWI) fly ash using natural fishbone hydroxyapatite (HAP): A novel approach to the treatment of waste material
使用天然鱼骨羟基磷灰石 (HAP) 稳定城市固体废物焚烧 (MSWI) 飞灰中的有害重金属:一种处理废物的新方法
  • 批准号:
    18K11697
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Not all bone nanocomposites are equal: structure-water-micromechanics of osteocytic and anosteocytic fishbone material
并非所有骨纳米复合材料都是相同的:骨细胞和骨细胞鱼骨材料的结构-水-微观力学
  • 批准号:
    514919660
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了