3D microscopy based on optical frequency comb by RF control

基于射频控制光学频率梳的 3D 显微镜

基本信息

项目摘要

In our previous report, the optical frequency comb generator consisting of two phase modulators in tandem we used generated the narrow bandwidth of the comb spectrum, only 2 nm, and resulted in the limited resolution up to 300μm. And some noises of many side-lobes appeared around the interferometric peaks due to a rectangular frequency comb spectrum. Furthermore, it took a long time for the data acquisition because the point-to-point scanning was used in a fiber-optic interferometer.To improve the performance of our previous system, we introduced new functions of a broad band frequency comb and a line-type image sensor to realize a frequency comb-based interferometric microscope. One of the improvements in the proposed system is that a broadband frequency comb spectrum of over 10 nm was obtained by combining a waveguide type-frequency comb generator^<6-8)> consisting of the phase modulator installed in the Fabry-Perot cavity and a subsequent wavelength equalizer^<9)>. The depth resolut … More ion is finally improved up to 35 μm, and the side-lobes in the interferometric signals also disappeared. Another important improvement is to realize a high-speed observation of three-dimensional images by the use of a line type-image sensor for capturing a line image in a horizontal direction at a time.The measurement resolution narrowed finally to 35 μm by introducing the waveguide-type frequency comb generator and the wavelength equalizer. Furthermore, introducing the line image sensor can obtain the simultaneous measurement of the whole horizontal cross sectional image of the interferometric signal. We successfully demonstrated the 3 dimensional surface profilometry of a Japanese 10-yen coin and observation of a cross sectional tomography image of transparent thin films by varying the comb frequency interval without mechanical shift. The dynamic range in the depth direction was about 1.1 mm and the measurement resolution was 35μm. The standard deviation of seven times thickness measurements was 5μm. Less
在我们之前的报告中,我们使用的由两个串联相位调制器组成的光学频率梳发生器生成的梳状光谱的带宽很窄,只有 2 nm,并导致分辨率高达 300μm。由于矩形频率梳频谱,在干涉峰周围出现了许多旁瓣的一些噪声。此外,由于光纤干涉仪采用点对点扫描,数据采集时间较长。为了提高之前系统的性能,我们引入了宽带频率梳和线型图像传感器的新功能,实现了基于频率梳的干涉显微镜。该系统的改进之一是,通过将波导型频率梳发生器^<6-8)>与安装在法布里-珀罗腔中的相位调制器和随后的波长均衡器^<9)>相结合,获得了超过10 nm的宽带频率梳频谱。离子深度分辨率最终提高到 35 μm,干涉信号中的旁瓣也消失了。另一个重要的改进是利用线型图像传感器一次捕获水平方向的线图像,实现三维图像的高速观察。通过引入波导型频率梳发生器和波长均衡器,测量分辨率最终缩小到35μm。此外,引入线图像传感器可以获得干涉信号的整个水平截面图像的同时测量。我们成功地演示了日本 10 日元硬币的 3 维表面轮廓测量,以及通过在不发生机械移位的情况下改变梳频率间隔来观察透明薄膜的横截面断层扫描图像。深度方向的动态范围约为1.1mm,测量分辨率为35μm。七次厚度测量的标准偏差为5μm。较少的

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
光周波数コム光源を用いた形状計測と膜厚測定
使用光学频率梳光源的形状测量和膜厚测量
形状測定方法、形状測定装置および周波数コム光発生装置
形状测量方法、形状测量装置以及频率梳光发生器
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
光周波数コムとリニア・イメージセンサを用いた3次元計測
使用光学频率梳和线性图像传感器进行 3D 测量
Frequency Comb-based Interferometry Using a Line-type Image Sensor
使用线型图像传感器的基于频率梳的干涉测量
supercontinuum frequency comb generation by optical pulse synthesizer and its application to interferometry
光脉冲合成器产生超连续频梳及其在干涉测量中的应用
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.;Tamura;S.;Choi;T.;Shioda;Y.;Tanaka;T.;Kurokawa
  • 通讯作者:
    Kurokawa
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KUROKAWA Takashi其他文献

KUROKAWA Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KUROKAWA Takashi', 18)}}的其他基金

Mode division multiplexing transmission using a multi-mode fiber and phase conjugation mirror
使用多模光纤和相位共轭镜的模分复用传输
  • 批准号:
    25600110
  • 财政年份:
    2013
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
The physiological, biomechanical and mental analysis of 3 kinds of coaching method of endurance runnings in Japanese elementary, junior high and high school
日本中小学耐力跑3种训练方法的生理、生物力学和心理分析
  • 批准号:
    23500732
  • 财政年份:
    2011
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Holographic 3D display using coherent VCSEL arrays
使用相干 VCSEL 阵列的全息 3D 显示
  • 批准号:
    22656079
  • 财政年份:
    2010
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Ultrafast signal processing based on optical frequency comb using optical synthesizer
基于光频率梳的光合成器超快信号处理
  • 批准号:
    20360154
  • 财政年份:
    2008
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of coherence tomography based on optical frequency comb
基于光学频率梳的相干层析成像研究
  • 批准号:
    16360027
  • 财政年份:
    2004
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Optical measurement technology and application using two photon absorption (TPA) on an image sensor
图像传感器上使用双光子吸收(TPA)的光学测量技术及应用
  • 批准号:
    14350032
  • 财政年份:
    2002
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ultra fast optical signal processing using arrayed waveguide grating
使用阵列波导光栅进行超快速光信号处理
  • 批准号:
    12450027
  • 财政年份:
    2000
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Broadband background canceling using optical frequency comb and application
利用光学频率梳消除宽带背景及应用
  • 批准号:
    23H01875
  • 财政年份:
    2023
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Optical frequency comb generation using integrated silicon photonic modulators
使用集成硅光子调制器生成光学频率梳
  • 批准号:
    573752-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 10.63万
  • 项目类别:
    University Undergraduate Student Research Awards
An optical frequency comb to support the quantum technology for fundamental physics programme
支持基础物理项目量子技术的光学频率梳
  • 批准号:
    ST/X005046/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Research Grant
Advanced Optical Frequency Comb Technologies and Applications
先进光频梳技术及应用
  • 批准号:
    EP/W002868/1
  • 财政年份:
    2022
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Research Grant
ASCENT: Using Optical Frequency Comb for Ultrafast Nature-Based Computing for Machine Learning Algorithms
ASCENT:使用光学频率梳进行机器学习算法的超快基于自然的计算
  • 批准号:
    2231036
  • 财政年份:
    2022
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Standard Grant
On-chip Multi-THz Span Optical Frequency Comb Generator for High Precision Air Pollution Monitoring
用于高精度空气污染监测的片上多太赫兹跨度光学频率梳发生器
  • 批准号:
    2734641
  • 财政年份:
    2022
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Studentship
NSF-BSF: The Phase-Modulated Quantum Optical Frequency Comb: A Simple Platform for One-Way Quantum Computing
NSF-BSF:相位调制量子光频梳:单向量子计算的简单平台
  • 批准号:
    2112867
  • 财政年份:
    2021
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Phase Stabilized Optical Frequency Comb for Precision Metrology, Quantum Sensing, Information Processing, and Novel Spectroscopy
MRI:获取用于精密计量、量子传感、信息处理和新型光谱学的相位稳定光学频率梳
  • 批准号:
    2117253
  • 财政年份:
    2021
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Standard Grant
Thermodynamic temperature determination by thermal radiation heterodyne detection using an optical frequency comb
使用光学频率梳通过热辐射外差检测来确定热力学温度
  • 批准号:
    21K18915
  • 财政年份:
    2021
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Real time and localized analysis of pulse laser fine-machining mechanism based on Raman scattering with optical frequency comb
基于光频梳拉曼散射的脉冲激光精加工机构实时局部分析
  • 批准号:
    19K21919
  • 财政年份:
    2019
  • 资助金额:
    $ 10.63万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了