Riemann-Hilbert problem for Gromov-Witten invariants
Gromov-Witten 不变量的黎曼-希尔伯特问题
基本信息
- 批准号:17K05193
- 负责人:
- 金额:$ 2.25万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2017
- 资助国家:日本
- 起止时间:2017-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Every semi-simple Frobenius manifold can be viewed as a solution of a classical Riemann-Hilbert problem. The monodromy data is determined by a certain subset of a finite dimensional complex vector space equipped with a symmetric bilinear form. This subset has all the properties of a root system except that the bilinear form is not necessarily positive definite. The elements of this subset are called reflection vectors because the reflections with respect to the corresponding orthogonal hyperplanes generate the monodromy group of the Frobenius manifold. The problem is to classify the reflection vectors corresponding the semi-simple Frobenius manifolds that underly quantum cohomology. It is known that the blowup operation preserves semi-simplicity of quantum cohomology. Therefore, it is natural to investigate how does the reflection vectors change under the blow up operation. On the other hand, there is a very interesting conjecture that gives an explicit description of the reflections in terms of exceptional objects in the derived category. I have started a project in collaboration with my student in which the goal is to prove that if the conjecture holds for some manifold X, then it holds for the blowup of X at finitely many points. We did not complete the project yet but we made an interesting progress: we proved that certain exceptional objects supported on the exceptional divisor of the blowup are reflection vectors. We wrote a paper which is now available on the arXiv and it will be submitted to a journal soon.
每个半单Frobenius流形都可以看作是一个经典Riemann-Hilbert问题的解。单值数据由有限维复向量空间的某个子集确定,该子集具有对称双线性形式。这个子集具有根系的所有性质,除了双线性形式不一定是正定的。这个子集的元素被称为反射向量,因为相对于相应的正交超平面的反射生成弗罗贝纽斯流形的单值群。问题是对对应于量子上同调的半简单弗罗贝纽斯流形的反射向量进行分类。已知爆破操作保持量子上同调的半简单性。因此,研究在爆破操作下反射向量如何变化是很自然的。另一方面,有一个非常有趣的猜想,给出了一个明确的描述反射的例外对象在派生类别。我已经开始了一个项目,在合作与我的学生,其目标是证明,如果猜想成立的一些流形X,那么它成立的爆破X在许多点。我们还没有完成这个项目,但我们取得了一个有趣的进展:我们证明了在爆破的例外因子上支持的某些例外对象是反射向量。我们写了一篇论文,现在可以在arXiv上找到,很快就会提交给期刊。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The 2-Component BKP Grassmannian and Simple Singularities of Type D
- DOI:10.1093/imrn/rnz325
- 发表时间:2018-04
- 期刊:
- 影响因子:1
- 作者:Jipeng Cheng;T. Milanov
- 通讯作者:Jipeng Cheng;T. Milanov
Primitive forms and Frobenius structures on the Hurwiotz spaces
Hurwiotz 空间上的原始形式和 Frobenius 结构
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Milanov Todor;Tonita Valentin;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov
- 通讯作者:Todor Milanov
Fano orbifold lines of type D and integrable hierarchies
D 型 Fano Orbifold 线和可积层次结构
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Milanov Todor;Tonita Valentin;Todor Milanov
- 通讯作者:Todor Milanov
Gromov--Witten invariants of Fano orbifold lines of type D and integrable hierarchies
Gromov--D 型法诺环折线和可积层次的维滕不变量
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Milanov Todor;Tonita Valentin;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov;Todor Milanov
- 通讯作者:Todor Milanov
The phase factors in singularity theory
奇点理论中的相位因素
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Hiroshi Iritani;Todor Milanov;Yongbin Ruan;and Yefeng Shen;Jipeng Cheng and Todor Milanov;Todor Milanov and Chenghan Zha;Todor Milanov
- 通讯作者:Todor Milanov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MILANOV Todor其他文献
MILANOV Todor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MILANOV Todor', 18)}}的其他基金
Integrability in Gromov--Witten theory
格罗莫夫--维滕理论中的可积性
- 批准号:
22K03265 - 财政年份:2022
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
K-theoretic enumerative invariants and q-difference equations
K 理论枚举不变量和 q 差分方程
- 批准号:
19F19802 - 财政年份:2019
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
W-constraints and the Eynard-Orantin topological recursion
W 约束和 Eynard-Orantin 拓扑递归
- 批准号:
26800003 - 财政年份:2014
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
W-constraints in Singularity Theory
奇点理论中的 W 约束
- 批准号:
23740005 - 财政年份:2011
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
相似海外基金
Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
- 批准号:
2306204 - 财政年份:2023
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
Symplectic duality and quantum cohomology
辛对偶性和量子上同调
- 批准号:
569197-2022 - 财政年份:2022
- 资助金额:
$ 2.25万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Quantum cluster algebras, quantum cohomology and integrable systems
量子簇代数、量子上同调和可积系统
- 批准号:
2436985 - 财政年份:2020
- 资助金额:
$ 2.25万 - 项目类别:
Studentship
Study of quantum cohomology and periods using tropical geometry
使用热带几何研究量子上同调和周期
- 批准号:
20K03582 - 财政年份:2020
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum cohomology of homogeneous spaces
齐次空间的量子上同调
- 批准号:
345815019 - 财政年份:2017
- 资助金额:
$ 2.25万 - 项目类别:
Research Fellowships
RUI: Affine Flags, p-adic Representations, and Quantum Cohomology
RUI:仿射旗、p-adic 表示和量子上同调
- 批准号:
1600982 - 财政年份:2016
- 资助金额:
$ 2.25万 - 项目类别:
Standard Grant
Quantum cohomology of infinite dimensional manifolds
无限维流形的量子上同调
- 批准号:
16K13759 - 财政年份:2016
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Systematic development and application of methods in differential geometry and integrable systems motivated by quantum cohomology
量子上同调驱动的微分几何和可积系统方法的系统开发和应用
- 批准号:
25247005 - 财政年份:2013
- 资助金额:
$ 2.25万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Quantum cohomology of flag manifolds
旗形流形的量子上同调
- 批准号:
311590-2005 - 财政年份:2009
- 资助金额:
$ 2.25万 - 项目类别:
Discovery Grants Program - Individual
FRG: Collaborative Research: Quantum Cohomology, Quantized Algebraic Varieties, and Representation Theory
FRG:合作研究:量子上同调、量化代数簇和表示论
- 批准号:
0854760 - 财政年份:2009
- 资助金额:
$ 2.25万 - 项目类别:
Continuing Grant














{{item.name}}会员




