On extension of multivariate normal distribution and effect of non-normality

关于多元正态分布的推广和非正态性的影响

基本信息

  • 批准号:
    20700254
  • 负责人:
  • 金额:
    $ 1.08万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
  • 财政年份:
    2008
  • 资助国家:
    日本
  • 起止时间:
    2008 至 2009
  • 项目状态:
    已结题

项目摘要

In this work, we have discussed the extension of multivariate normal distribution and the effect of non-normality. For elliptical distribution which is one of multivariate non-normal distributions, we have considered the moment formulas and the estimation of parameters, and have obtained the basic properties. In order to examine the effect of non-normality, asymptotic expansions of distributions for test statistics have been derived under elliptical populations.
在这项工作中,我们讨论了多元正态分布的扩展和非正态性的影响。对于椭圆分布这一多元非正态分布,我们考虑了矩的公式和参数的估计,得到了椭圆分布的基本性质。为了检验非正态性的影响,推导了椭圆总体下检验统计量分布的渐近展开式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Note on testing the quality of mean components
平均成分质量检验注意事项
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Sugiyama;T.Suzuki;Y.Itho;T.Kanamori;M.Kimura;Y. Maruyama;Y. Maruyama
  • 通讯作者:
    Y. Maruyama
A note on sample measure of multivariate skewness
关于多元偏度样本测量的注释
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Sugiyama;T.Suzuki;Y.Itho;T.Kanamori;M.Kimura;Y. Maruyama
  • 通讯作者:
    Y. Maruyama
Improved moment estimation for elliptically contoured distributions
改进椭圆轮廓分布的矩估计
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Hido;Y.Tsuboi;H.Kashima;M.Sugiyama;T.Kanamori;Y. Maruyama
  • 通讯作者:
    Y. Maruyama
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARUYAMA Yoshihito其他文献

MARUYAMA Yoshihito的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

多変量解析における分布の近似法の統一的研究
多元分析中分布近似方法的统一研究
  • 批准号:
    24K14852
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ドロマイトの微量元素・同位体比組成とその多変量解析による新たな鉱床探査手法の開発
白云石微量元素、同位素组成找矿新方法开发及其多元分析
  • 批准号:
    24K08332
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
反射スペクトルの多変量解析に基づく油彩画下層の油絵具マッピング分析法の開発
基于反射光谱多元分析的油画下层油画映射分析方法开发
  • 批准号:
    24K04374
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
風化鉱床における鉄微粒子のレアメタル濃集機構:微視的観察と多変量解析からの制約
风化矿床铁颗粒中稀有金属富集机制:显微观察和多元分析的制约
  • 批准号:
    24K17643
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
多変量解析に関する特異ランダム行列の固有値分布論の新展開
多元分析奇异随机矩阵特征值分布理论的新进展
  • 批准号:
    22KJ2804
  • 财政年份:
    2023
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
多変量解析アプローチによるレーザー光からプラズマへのエネルギー変換特性の理解深化
使用多元分析方法加深对从激光到等离子体的能量转换特性的理解
  • 批准号:
    23KJ1444
  • 财政年份:
    2023
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
分位点を推定する多変量解析法に対する非対称ノルムを用いた統一的な表現法
使用不对称范数的统一表示方法用于估计分位数的多元分析方法
  • 批准号:
    22K17862
  • 财政年份:
    2022
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
多変量解析に関する基礎数理の系統的指導内容の構築
开发与多元分析相关的基础数学的系统教学内容
  • 批准号:
    22K13720
  • 财政年份:
    2022
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
多変量解析を用いた簿記初学者の特性に関する分析
利用多元分析法分析簿记初学者的特征
  • 批准号:
    22K01805
  • 财政年份:
    2022
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
休職中の多角的心身データの多変量解析による復職レジリエンス予測モデルの構築
通过对休假期间多方面的精神和身体数据进行多变量分析,建立重返工作弹性的预测模型
  • 批准号:
    22K11310
  • 财政年份:
    2022
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了