Learning methods and new sensors for autonomous robots
自主机器人的学习方法和新型传感器
基本信息
- 批准号:5402308
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2002
- 资助国家:德国
- 起止时间:2001-12-31 至 2002-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Investigate the possibility of using some of the new biologically inspired sensors developed at Penn, such as the tracking and orientation sensors. Right now, our larger robots do the full analysis of the video images using a laptop connected to a digital camera. Most of the processing is spent finding field features in the image (lines, corners, color transitions) in order to find the position of the robot. Using Penn's tracking sensor it would be possible to start from a known position in the field and track the movement of the robot, obtaining in this way an update independent of the robot's odometry. Penn's sensor has been used until now to track objects moving in front of a fixed system - our system would be moving and the environment would be fixed. Penn's orientation sensor detects also some of the low-level features we are interested in (lines, edges, line stops), it would be interesting to explore how to integrate it in our current System. b) Investigate automatic color and light calibration for autonomous robots. Our robots are calibrated now by hand, i.e. by an operator that adjusts the camera and a color table according to what he sees on a computer screen. This is the approach followed by all other RoboCup teams. I would like to be able to put a "naive" robot on the field, that looks around, and from its knowledge of the geometry and colors of the field calibrates itself automatically. The robot would learn the characteristics of the geometric projection made by the camera and would generate a color table according to its position on the field. The main objective would be to be able to take the robot out of a box, and after a few seconds, the robot should be able to explore its surroundings and play. This learning approach could be extended to other robots, such as the Sony legged robots. There are also some new sensors I would like to test for this task, such as the retina inspired camera of the Institute of Microelectronics in Stuttgart (IMS). c) Investigate control of the robot using Reinforcement Learning. Until now we have written the full control routines by hand. Every time we change motors or some part of the hardware, we have to adjust parameters of the robot or weite new control routines. I would like to let the robot learn how to move automatically, by moving on the field and tumbling around, at the beginning. If point (b) succeeds, the robot should be able to learn how to move, how to provide power to the motors, and how to brake.
研究使用宾夕法尼亚大学开发的一些新的受生物学启发的传感器的可能性,例如跟踪和定向传感器。现在,我们的大型机器人使用连接数码相机的笔记本电脑对视频图像进行全面分析。为了找到机器人的位置,大部分的处理都花在寻找图像中的场特征(线、角、颜色过渡)上。使用Penn的跟踪传感器,可以从现场的已知位置开始跟踪机器人的运动,以这种方式获得独立于机器人里程计的更新。到目前为止,佩恩的传感器一直用于跟踪固定系统前移动的物体——我们的系统会移动,环境是固定的。Penn的方向传感器还检测了一些我们感兴趣的低级特征(线,边,线停),探索如何将其集成到我们当前的系统中将是很有趣的。b)研究自主机器人的自动颜色和光线校准。我们的机器人现在是手动校准的,即由操作员根据他在电脑屏幕上看到的调整摄像头和色表。这是所有其他机器人世界杯球队所遵循的方法。我希望能够把一个“天真”的机器人放在球场上,它环顾四周,并根据它对球场几何形状和颜色的了解自动校准自己。机器人将学习相机所做的几何投影的特征,并根据其在场地上的位置生成一个颜色表。我们的主要目标是能够将机器人从盒子中取出,几秒钟后,机器人应该能够探索周围环境并进行游戏。这种学习方法可以扩展到其他机器人,比如索尼的有腿机器人。我还想测试一些新的传感器,比如斯图加特微电子研究所(IMS)的视网膜启发相机。c)使用强化学习研究机器人的控制。到目前为止,我们已经手工编写了完整的控制例程。每次我们更换电机或硬件的某些部分时,我们都必须调整机器人的参数或编写新的控制程序。我想让机器人学习如何自动移动,通过在场上移动和翻滚,一开始。如果(b)点成功,机器人应该能够学习如何移动,如何为马达提供动力,以及如何刹车。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Raúl Rojas其他文献
Professor Dr. Raúl Rojas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Raúl Rojas', 18)}}的其他基金
SWARMS: Swarm Intelligence for Autonomous Cars
SWARMS:自动驾驶汽车的群体智能
- 批准号:
273356841 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Priority Programmes
Mikrooptik-Lesebrille für Blinde und Sehbehinderte
专为盲人和视障人士设计的微型光学老花镜
- 批准号:
81589375 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Mathematische Handschrifterkennung in Context
上下文中的数学手写识别
- 批准号:
15580491 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Elektronische Lehrumgebung für Präsenz- und Fernunterricht
用于面对面和远程学习的电子教学环境
- 批准号:
5430951 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Adaptive Computer Vision and Learning from a Coach for Small-Size and Mid-Size Robots
中小型机器人的自适应计算机视觉和教练学习
- 批准号:
5319424 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
High-Valent Iron-Oxo Species for Activation of Strong CH Bonds: New Designs with Novel Ab Initio Methods and Machine Learning
用于激活强CH键的高价铁氧物种:采用新颖的从头算方法和机器学习的新设计
- 批准号:
24K17694 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
- 批准号:
MR/X033880/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Deep Learning Assisted Scoring of Point of Care Lung Ultrasound for Acute Decompensated Heart Failure in the Emergency Department
深度学习辅助急诊室急性失代偿性心力衰竭护理点肺部超声评分
- 批准号:
10741596 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Advanced machine learning to empower ultra-sensitive liquid biopsy in melanoma and non-small cell lung cancer
先进的机器学习使黑色素瘤和非小细胞肺癌的超灵敏液体活检成为可能
- 批准号:
10591304 - 财政年份:2023
- 资助金额:
-- - 项目类别:
New methods for enhanced brain activity mapping through multi-modal data-fusion and deep learning
通过多模态数据融合和深度学习增强大脑活动映射的新方法
- 批准号:
2830309 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
CRCNS: Deep Learning to Discover Neurovascular Disruptions in Alzheimer's Disease
CRCNS:深度学习发现阿尔茨海默病的神经血管破坏
- 批准号:
10831259 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Learning How to Give Casual Explanations for Large Scale Virtual and Morphological Pharmacology
学习如何对大规模虚拟和形态药理学进行随意解释
- 批准号:
10713386 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324490 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324489 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant