Some problems in combinatorial theory and quantum information theory based on algebraic coding theory

基于代数编码理论的组合理论和量子信息论的一些问题

基本信息

  • 批准号:
    23540148
  • 负责人:
  • 金额:
    $ 3.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2011
  • 资助国家:
    日本
  • 起止时间:
    2011 至 2014
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
(G,χ)-共変的量子信号とその必要十分条件
(G,χ)-协变量子信号及其充要条件
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Hida;Si Si and Win Win Htay,;Si Si;K-S. Lee and Si Si;Si Si;Si Si;Si Si;Si Si;Keisuke Shiromoto;Si Si;石川 喜啓
  • 通讯作者:
    石川 喜啓
On critical exponents of matroids and linear codes
关于拟阵和线性码的临界指数
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Hida;Si Si and Win Win Htay,;Si Si;K-S. Lee and Si Si;Si Si;Si Si;Si Si;Si Si;Keisuke Shiromoto
  • 通讯作者:
    Keisuke Shiromoto
古典・量子通信における通信路行列公式の一般化に向けて
经典和量子通信中信道矩阵公式的推广
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    石川 喜啓
  • 通讯作者:
    石川 喜啓
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHIROMOTO Keisuke其他文献

SHIROMOTO Keisuke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHIROMOTO Keisuke', 18)}}的其他基金

Manifold research on algebraic coding theory
代数编码理论的流形研究
  • 批准号:
    20740063
  • 财政年份:
    2008
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)

相似海外基金

マトロイドの臨界問題の新展開と解決への複合的アプローチ
拟阵关键问题的新​​进展和解决该问题的复合方法
  • 批准号:
    23K20225
  • 财政年份:
    2024
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
マトロイドに関する問題に対する理論的に高速なアルゴリズムの設計
为拟阵问题设计理论上快速的算法
  • 批准号:
    24KJ1494
  • 财政年份:
    2024
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
マトロイドをめぐる組合せ可換環論的研究
拟阵的组合交换代数研究
  • 批准号:
    24K06670
  • 财政年份:
    2024
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
マトロイド理論を軸とするアルゴリズム的ゲーム理論の体系的な研究
以拟阵理论为中心的算法博弈论系统研究
  • 批准号:
    24K14828
  • 财政年份:
    2024
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
グラフ・マトロイド・凸幾何の組合せ構造と関連する離散最適化の研究
图、拟阵和凸几何组合结构相关的离散优化研究
  • 批准号:
    23K03194
  • 财政年份:
    2023
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
有限環上のマトロイドの構造解析と工学的応用
有限环上拟阵的结构分析及工程应用
  • 批准号:
    22KJ2512
  • 财政年份:
    2023
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
離散構造における不変量と対称性
离散结构中的不变量和对称性
  • 批准号:
    22K03277
  • 财政年份:
    2022
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing Theory of Combinatorial Optimization Based on Matrix Representations
发展基于矩阵表示的组合优化理论
  • 批准号:
    22K17853
  • 财政年份:
    2022
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
情報の欠如した公平分割問題に対するアルゴリズム
缺乏信息的公平分配问题的算法
  • 批准号:
    21K17708
  • 财政年份:
    2021
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploration into Matroid Common Base Packing Problem
Matroid公共基础装箱问题探讨
  • 批准号:
    20K19743
  • 财政年份:
    2020
  • 资助金额:
    $ 3.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了