Polygons in symmetric spaces and buildings with applications to algebra
对称空间和建筑物中的多边形及其在代数中的应用
基本信息
- 批准号:5407455
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2003
- 资助国家:德国
- 起止时间:2002-12-31 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project belongs within the framework of metric spaces with curvature bounded above. It concerns the geometry of nonpositively curved spaces of higher rank, that is, of symmetric spaces of noncompact type and Euclidean buildings. We will study some basic questions such as restrictions on the side lengths of polygons and in relation with this develop further the general geometric structure theory. As for the methods, comparison geometry, building theory and Lie theory play the main role in our investigations, and apart from this there is influence by ideas from symplectic geometry and algebraic geometry. Although the questions we are mainly interested in as well as the methods are geometric, there are serious applications to algebraic problems, such as Eigenvalues of a Sum problem going back to H. Weyl and the Decompositon of Tensor Products problem in representation theory.
这个项目属于度量空间的框架与曲率有界以上。它涉及的几何非积极弯曲空间的更高的秩,即对称空间的非紧型和欧几里得建筑。我们将研究一些基本问题,如多边形边长的限制,并在此基础上进一步发展一般几何结构理论。至于方法,比较几何,建筑理论和李理论在我们的调查中发挥了主要作用,除此之外,还有辛几何和代数几何思想的影响。虽然我们主要感兴趣的问题以及方法是几何的,但它在代数问题中有重要的应用,例如和的特征值问题可以追溯到H。Weyl与表示论中张量积的分解问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Bernhard Leeb其他文献
Professor Dr. Bernhard Leeb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Bernhard Leeb', 18)}}的其他基金
Geometrisierung in Dimension 3 und Geometrie singulärer Räume
第三维几何和奇异空间几何
- 批准号:
5335292 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Priority Programmes
Geometrisierung in Dimension 3 und Geometrie singulärer Räume
第三维几何和奇异空间几何
- 批准号:
5335298 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
- 批准号:
2338933 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Coding theory and Design theory for probability measures on symmetric spaces
对称空间概率测度的编码理论和设计理论
- 批准号:
23KJ1641 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Comprehensive study of various geometries with harmonic maps to symmetric spaces as a core
以对称空间调和映射为核心的各种几何学的综合研究
- 批准号:
22K03304 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
- 批准号:
RGPIN-2018-04784 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Symmetric spaces, topology and analysis
对称空间、拓扑和分析
- 批准号:
RGPIN-2019-03964 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Geometric analysis of convolution operators on symmetric spaces and its applications to integral geometry and inverse problems
对称空间上卷积算子的几何分析及其在积分几何和反问题中的应用
- 批准号:
21K03264 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetric spaces, topology and analysis
对称空间、拓扑和分析
- 批准号:
RGPIN-2019-03964 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Homology growth in families of locally symmetric spaces
局部对称空间族中的同源增长
- 批准号:
RGPIN-2018-04784 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Submanifold theory related to the twistor space of quaternionic symmetric spaces
与四元对称空间扭量空间相关的子流形理论
- 批准号:
20K03575 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




