Research of Ricci soliton in terms of Submanifold theory
子流形理论下的Ricci孤子研究
基本信息
- 批准号:24540080
- 负责人:
- 金额:$ 3.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2012
- 资助国家:日本
- 起止时间:2012-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Austere hypersurfaces in 5-sphere and real hypersurfaces in complex projective plane
五球体中的朴素超曲面与复射影平面中的实超曲面
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Imsoon Jeong;Makoto Kimura;Hyunjin Lee;Young Jin Suh;Seiichi Kamada;Jong Taek Cho and Makoto Kimura
- 通讯作者:Jong Taek Cho and Makoto Kimura
Gauss map of real hypersurfaces in complex projective space and submanifolds in complex 2-plane Grassmannian
复射影空间中的实超曲面和复 2 平面格拉斯曼中的子流形的高斯图
- DOI:
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Imsoon Jeong;Makoto Kimura;Hyunjin Lee;Young Jin Suh;Seiichi Kamada;Jong Taek Cho and Makoto Kimura;Makoto Sakuma;Jong Taek Cho and Makoto Kimura;Seiichi Kamada;鎌田聖一;Jong Taek Cho and Makoto Kimura;Seiichi Kamada;Makoto KImura;作間誠;Seiichi Kamada;Makoto Kimura;Seiichi Kamada;Makoto Kimura;松本堯生;Makoto Kimura;Seiichi Kamada;松本堯生;Makoto Kimura;鎌田聖一;Makoto Kimura;木村真琴
- 通讯作者:木村真琴
Hopf hypersurfaces in non-flat complex space forms and submanifolds in Grassmannians
非平坦复空间形式中的 Hopf 超曲面和 Grassmannians 的子流形
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Imsoon Jeong;Makoto Kimura;Hyunjin Lee;Young Jin Suh;Seiichi Kamada;Jong Taek Cho and Makoto Kimura;Makoto Sakuma;Jong Taek Cho and Makoto Kimura;Seiichi Kamada;鎌田聖一;Jong Taek Cho and Makoto Kimura;Seiichi Kamada;Makoto KImura;作間誠;Seiichi Kamada;Makoto Kimura;Seiichi Kamada;Makoto Kimura;松本堯生;Makoto Kimura;Seiichi Kamada;松本堯生;Makoto Kimura;鎌田聖一;Makoto Kimura;木村真琴;作間誠;木村真琴;Seiichi Kamada;Makoto Kimura;松本堯生;木村真琴;松本堯生;木村真琴;Makoto Kimura;Seiichi Kamda;Makoto Kimura
- 通讯作者:Makoto Kimura
Characterizations of three homogeneous real hypersurfaces in a complex projective space
复杂射影空间中三个齐次实超曲面的表征
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0.5
- 作者:H. Akiyoshi;D. Lee and M. Sakuma;Donghi Lee and Makoto Sakuma;Donghi Lee and Makoto Sakuma;Donghi Lee and Makoto Sakuma;J. Scott Carter and Seiichi Kamada;Donghi Lee and Makoto Sakuma;Jong Taek Cho and Makoto Kimura;松本堯生;Makoto Kimura and Sadahiro Maeda
- 通讯作者:Makoto Kimura and Sadahiro Maeda
Twistor space of complex 2-plane Grassmannian and submanifolds in complex space forms
复2平面格拉斯曼的扭量空间和复空间形式的子流形
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Imsoon Jeong;Makoto Kimura;Hyunjin Lee;Young Jin Suh;Seiichi Kamada;Jong Taek Cho and Makoto Kimura;Makoto Sakuma;Jong Taek Cho and Makoto Kimura;Seiichi Kamada;鎌田聖一;Jong Taek Cho and Makoto Kimura;Seiichi Kamada;Makoto KImura;作間誠;Seiichi Kamada;Makoto Kimura;Seiichi Kamada;Makoto Kimura;松本堯生;Makoto Kimura
- 通讯作者:Makoto Kimura
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kimura Makoto其他文献
枠付き曲面の測地線について
关于框架曲面的测地线
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Cho Jong Taek;Kimura Makoto;Tatsuo Suwa;高橋 雅朋 - 通讯作者:
高橋 雅朋
Evolution of thermally metamorphosed C-complex asteroids inferred from a heated CM chondrite Jbilet Winselwan
从加热的 CM 球粒陨石 Jbilet Winselwan 推断热变质 C 复合物小行星的演化
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Fujiya Wataru;Higashi Hisahito;Hibiya Yuki;Sugawara Shingo;Yamaguchi Akira;Kimura Makoto;Hashizume Ko - 通讯作者:
Hashizume Ko
Heat Source of a Thermally Metamorphosed CM Chondrite Jbilet Winselwan
热变质 CM 球粒陨石的热源 Jbilet Winselwan
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Fujiya Wataru;Higashi Hisahito;Hibiya Yuki;Sugawara Shingo;Yamaguchi Akira;Kimura Makoto;Hashizume Ko - 通讯作者:
Hashizume Ko
New measurement technique for characterizing small extraterrestrial materials by X‐ray diffraction using the Gandolfi attachment
使用 Gandolfi 附件通过 X 射线衍射表征小型外星材料的新测量技术
- DOI:
10.1111/maps.13491 - 发表时间:
2020 - 期刊:
- 影响因子:2.2
- 作者:
Imae Naoya;Kimura Makoto - 通讯作者:
Kimura Makoto
Comparison of humus composition in the subsoil of Japanese Paddy and upland fields
日本稻田和旱田底土腐殖质组成的比较
- DOI:
10.1080/00380768.2000.10408772 - 发表时间:
2000 - 期刊:
- 影响因子:2
- 作者:
N. Maie;A. Watanabe;K. Taki;Yano Hideji;Kimura Makoto - 通讯作者:
Kimura Makoto
Kimura Makoto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kimura Makoto', 18)}}的其他基金
Development of innovative mud treatment technology using waste paper and elucidation of the treatment mechanism
利用废纸开发创新泥浆处理技术并阐明处理机理
- 批准号:
19H02235 - 财政年份:2019
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Rolls of the importin beta family nucleocytoplasmic transport receptors in cellular regulation systems
细胞调节系统中输入β家族核细胞质转运受体的作用
- 批准号:
18K06235 - 财政年份:2018
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Customer experience (CX) management in the IoT age - Analysis, Design, Calculus for the Customer Journey
物联网时代的客户体验 (CX) 管理 - 客户旅程的分析、设计和演算
- 批准号:
17K04017 - 财政年份:2017
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Twistor theory in Submanifold geometry
子流形几何中的扭量理论
- 批准号:
16K05119 - 财政年份:2016
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on structure and function of the processing enzyme for pre-tRNA and its application
前tRNA加工酶的结构、功能研究及其应用
- 批准号:
15H04487 - 财政年份:2015
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of cellular processes that involve the importin family nucleocytoplasmic transport receptors
阐明涉及输入家族核细胞质转运受体的细胞过程
- 批准号:
15K07064 - 财政年份:2015
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comparative mineralogy of meteorites and planetary materials
陨石和行星物质的比较矿物学
- 批准号:
26400510 - 财政年份:2014
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanism of the VNC indaction of Vibrio parahaemolyticus
副溶血弧菌VNC感染的分子机制
- 批准号:
26660090 - 财政年份:2014
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Case studies on rural road improvement and disaster prevention measures with community initiatives in Asia and the Pacific
亚洲及太平洋地区农村道路改善和灾害预防措施与社区倡议的案例研究
- 批准号:
25303007 - 财政年份:2013
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Study on vector bundles and applications to stability and freeness of logarithmic vector fields along a hypersurface
向量丛研究及其在超曲面对数向量场稳定性和自由度中的应用
- 批准号:
15F15318 - 财政年份:2015
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Applications of algebraic local cohomology to hypersurface singularities
代数局部上同调在超曲面奇点中的应用
- 批准号:
15K17513 - 财政年份:2015
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research for duality and transformations of generic conformally flat hypersurfaces.
通用共形平坦超曲面的对偶性和变换研究。
- 批准号:
26400076 - 财政年份:2014
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Reconstruction and Recognition Problems for Hypersurface Singularities
超曲面奇点的重建与识别问题
- 批准号:
DP140100296 - 财政年份:2014
- 资助金额:
$ 3.24万 - 项目类别:
Discovery Projects
Mathematical analysis on fluid-flow on a moving hypersurface
运动超曲面上流体流动的数学分析
- 批准号:
25887048 - 财政年份:2013
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Active Random Hypersurface Models: Simultaneous Shape and Pose Tracking of Extended Objects in Noisy Point Clouds
主动随机超曲面模型:噪声点云中扩展对象的同时形状和姿态跟踪
- 批准号:
234520279 - 财政年份:2013
- 资助金额:
$ 3.24万 - 项目类别:
Research Grants
The structures of hypersurface simple K3 singularities
超曲面简单K3奇点的结构
- 批准号:
22540060 - 财政年份:2010
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on conformally flat hypersurfaces
共形平坦超曲面研究
- 批准号:
21540102 - 财政年份:2009
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining ideals of projective varieities and their embedding structure
定义射影簇的理想及其嵌入结构
- 批准号:
20540039 - 财政年份:2008
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




