The Study of Nonlinear Functional Analysis and Nonlinear Problems Based on New Fixed Point Theory and Convex Analysis

基于新不动点理论和凸分析的非线性泛函分析及非线性问题研究

基本信息

  • 批准号:
    15K04906
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2015
  • 资助国家:
    日本
  • 起止时间:
    2015-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Weak and strong convergence theorems for noncommutative normally 2-generalized hybrid mappings in Hilbert spaces
希尔伯特空间中非交换常 2-广义混合映射的弱收敛定理和强收敛定理
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen;Yong; .Izuchi; Kei Ji; Lee;Young Joo;S. Takahashi and W. Takahashi
  • 通讯作者:
    S. Takahashi and W. Takahashi
Strong convergence theorems for commutative families of linear continuous operators in Banach spaces
Banach空间中线性连续算子交换族的强收敛定理
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wataru Takahashi;Ngai-Ching Wong;Jen-Chih Yao
  • 通讯作者:
    Jen-Chih Yao
New classes of nonlinear operators and weak and strong convergence theorems in Hilbert spaces and Banach spaces
新类非线性算子以及希尔伯特空间和巴纳赫空间中的弱收敛和强收敛定理
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Satoru Takahashi;Wataru Takahashi;細川 卓也;W. Takahashi;W. Takahashi;大野修一;W. Takahashi;泉池敬司;W. Takahashi;細川卓也;W. Takahashi;W. Takahashi;W. Takahashi
  • 通讯作者:
    W. Takahashi
Attractive point and weak convergence theorems for two commutative nonlinear mappings in Banach spaces
Banach空间中两个可交换非线性映射的吸引点和弱收敛定理
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    細川卓也; 泉池敬司;大野修一;W. Takahashi
  • 通讯作者:
    W. Takahashi
Strong Convergence Theorems for New Nonlinear Operators in Banach Spaces and Applications
Banach空间中新非线性算子的强收敛定理及其应用
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Takahashi;W. Takahashi;W. Takahashi;W. Takahashi
  • 通讯作者:
    W. Takahashi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKAHASHI Wataru其他文献

TAKAHASHI Wataru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKAHASHI Wataru', 18)}}的其他基金

A Manual for Supporters of Extensive Japanese Reading
日语泛读支持者手册
  • 批准号:
    19K20963
  • 财政年份:
    2018
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Identification of a genetic locus and dynamic analysis of genes for cellulose biosynthesis in ryegrasses
黑麦草纤维素生物合成基因位点鉴定及动态分析
  • 批准号:
    26450026
  • 财政年份:
    2014
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Monetary Policy of Tokugawa Shogunate: Empirical and Theoretical Analysis based on Historical Evidence
德川幕府的货币政策:基于历史证据的实证和理论分析
  • 批准号:
    25285100
  • 财政年份:
    2013
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Study of Nonlinear Functional Analysis and Nonlinear Problems Based on Fixed Point Theory and Convex Analysis
基于不动点理论和凸分析的非线性泛函分析和非线性问题的研究
  • 批准号:
    23540188
  • 财政年份:
    2011
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Development of Preservice Teacher Education Curriculum to Teach Foreign Language Activities in Elementary School Classrooms
小学课堂外语教学的职前教师教育课程开发
  • 批准号:
    23652134
  • 财政年份:
    2011
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Molecular genetic study of cellulose biosynthesis mutant in Italian ryegrass
意大利黑麦草纤维素生物合成突变体的分子遗传学研究
  • 批准号:
    23580027
  • 财政年份:
    2011
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Study of Nonlinear Functional Analysis and Convex Analysis and its Applications Based on Optimization Theory and Fixed Point Theory
基于最优化理论和不动点理论的非线性泛函分析和凸分析及其应用研究
  • 批准号:
    19540167
  • 财政年份:
    2007
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear functional analysis and nonlinear problems by using fixed point theory
使用不动点理论进行非线性泛函分析和非线性问题
  • 批准号:
    15540157
  • 财政年份:
    2003
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear functional analysis and convex analysis problem by using fixed point theory
使用不动点理论的非线性泛函分析和凸分析问题
  • 批准号:
    12640157
  • 财政年份:
    2000
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A UNIX-based Analysis of Data-processing for English Linguistics
基于 UNIX 的英语语言学数据处理分析
  • 批准号:
    09610475
  • 财政年份:
    1997
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Analysis of algorithms for resouce allocation: an approach from market design and discrete convex analysis
资源分配算法分析:市场设计和离散凸分析的方法
  • 批准号:
    22KJ0717
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
  • 批准号:
    RGPIN-2020-06425
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Discovery Grants Program - Individual
Study of vector fields and development of convex analysis on complete geodesic spaces
矢量场的研究和完全测地空间凸分析的发展
  • 批准号:
    21K03316
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
  • 批准号:
    RGPIN-2020-06425
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Discovery Grants Program - Individual
Study of Nonlinear Functional Analysis based on Fixed Point Theory and Convex Analysis
基于不动点理论和凸分析的非线性泛函分析研究
  • 批准号:
    20K03660
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
  • 批准号:
    RGPIN-2020-06425
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Discovery Grants Program - Individual
RUI: Robust Feasibility and Robust Optimization using Algebraic Topology and Convex Analysis
RUI:使用代数拓扑和凸分析的鲁棒可行性和鲁棒优化
  • 批准号:
    1819229
  • 财政年份:
    2018
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Research on Discrete Convex Analysis Approach for Robust Nonlinear Integer Programming Problems
鲁棒非线性整数规划问题的离散凸分析方法研究
  • 批准号:
    18K11177
  • 财政年份:
    2018
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Convex Analysis and Applications in Machine Learning
凸分析及其在机器学习中的应用
  • 批准号:
    512553-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 3万
  • 项目类别:
    University Undergraduate Student Research Awards
Convex Analysis, Monotone Operator Theory and Algorithms
凸分析、单调算子理论与算法
  • 批准号:
    216877-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 3万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了