Research of symmetries arising from automorphisms of operator algebras

算子代数自同构引起的对称性研究

基本信息

  • 批准号:
    16K05180
  • 负责人:
  • 金额:
    $ 2.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2016
  • 资助国家:
    日本
  • 起止时间:
    2016-04-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the relative bicentralizer flows and the relative flow of weights of inclusions of factors of type III_1
关于III_1型因子的相对双中心流量和包含物权重的相对流量
強従順なC^*テンソル圏のロバーツ作用の分類について
关于强服从 C^* 张量类别中 Roberts 动作的分类
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Masuda;R. Tomatsu;Toshihiko Masuda;増田俊彦;増田俊彦;増田俊彦;増田俊彦;増田俊彦;増田俊彦;増田俊彦
  • 通讯作者:
    増田俊彦
A simple sufficient condition for triviality of obstructions in the orbifold construction for subfactors
子因子环折构造中障碍物琐碎性的简单充分条件
  • DOI:
    10.7146/math.scand.a-26240
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Toshihiko Masuda;Toshihiko Masuda;Toshihiko Masuda
  • 通讯作者:
    Toshihiko Masuda
Outer actions (G-kernels) of discrete amenable groupoids on injective factors
离散服从群群对单射因子的外部作用(G 核)
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Masuda;R. Tomatsu;Toshihiko Masuda;増田俊彦;増田俊彦;増田俊彦
  • 通讯作者:
    増田俊彦
Classification of outer actions of discrete amenable groupoids on injective factors
离散服从群群对单射因子的外部作用的分类
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Masuda Toshihiko其他文献

Masuda Toshihiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Masuda Toshihiko', 18)}}的其他基金

Research of automorphism groups and group action classification of operator algebras
算子代数自同构群及群作用分类的研究
  • 批准号:
    23540246
  • 财政年份:
    2011
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Calabi-Yau多様体の自己同型と不変量の研究
Calabi-Yau流形自同构与不变量的研究
  • 批准号:
    19K14520
  • 财政年份:
    2019
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Automorphisms and periods of K3 surfaces
K3 曲面的自同构和周期
  • 批准号:
    17K14156
  • 财政年份:
    2017
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
場の量子論における繰り込みと弦理論の双対性
量子场论中重整化与弦论的对偶性
  • 批准号:
    17654011
  • 财政年份:
    2005
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
作用素環論における部分因子環の構造に関する研究
算子代数理论中子因子环的结构研究
  • 批准号:
    14740119
  • 财政年份:
    2002
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
符号の対称性とその高次元化による符号の高性能化に関する基礎的研究
代码对称性和通过增加维度来提高代码性能的基础研究
  • 批准号:
    01550263
  • 财政年份:
    1989
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了