クラスター代数の組合せ的表現論および可積分系への応用

簇代数的组合表示理论及其在可积系统中的应用

基本信息

  • 批准号:
    23K03048
  • 负责人:
  • 金额:
    $ 3.08万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2023
  • 资助国家:
    日本
  • 起止时间:
    2023-04-01 至 2028-03-31
  • 项目状态:
    未结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

山崎 玲其他文献

フローサイトメトリーを用いたメタン生成菌共生嫌気性繊毛虫の検出と分取
使用流式细胞仪检测和分离产甲烷菌共生厌氧纤毛虫
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    塩浜 康雄;山崎 玲;森 祥太;伊藤 通浩;新里 尚也
  • 通讯作者:
    新里 尚也
嫌気性繊毛虫GW7株におけるメタン生成アーキア、バクテリアとの共生関係
厌氧纤毛虫GW7菌株中产甲烷古菌与细菌的共生关系
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    竹下和貴;山田尊貴;川原邑斗;成廣 隆;伊藤通浩;鎌形洋一;山崎 玲;新里 尚也
  • 通讯作者:
    新里 尚也

山崎 玲的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('山崎 玲', 18)}}的其他基金

Affine cluster algebras as dynamical systems, surface triangulations, quiver representations and friezes
仿射簇代数作为动力系统、表面三角测量、箭袋表示和饰带
  • 批准号:
    21F20788
  • 财政年份:
    2021
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
アフィンクラスター代数による力学系、曲面三角形分割、箙表現、およびフリーズの研究
使用仿射簇代数研究动力系统、表面三角测量、颤动表示和冻结
  • 批准号:
    20F20788
  • 财政年份:
    2020
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Application of cluster algebras to punctured Riemann surfaces and combinatorial representation theory
簇代数在刺穿黎曼曲面和组合表示理论中的应用
  • 批准号:
    19K03440
  • 财政年份:
    2019
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

対称関数の代数的組合せ論とその表現論,組合せ論,可積分系への応用
对称函数的代数组合及其在表示论、组合学和可积系统中的应用
  • 批准号:
    24K06646
  • 财政年份:
    2024
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
量子アファイン代数の表現論を用いた組合せ論的諸問題の解決
使用量子仿射代数表示论解决组合问题
  • 批准号:
    23K12953
  • 财政年份:
    2023
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
表現論的構造のパラメタ変形から生じる表現論・数論・組合せ論
由表示结构的参数变换产生的表示论、数论和组合学
  • 批准号:
    22K03272
  • 财政年份:
    2022
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
対称関数を基軸とした表現論,組合せ論の研究
基于对称函数的表示论与组合学研究
  • 批准号:
    21K03202
  • 财政年份:
    2021
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
KLR代数における組合せ論的表現論
KLR代数中的组合表示论
  • 批准号:
    14J02673
  • 财政年份:
    2014
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
量子展開環の組合せ論的表現論とDirichlet級数の研究
量子膨胀环的组合表示理论及狄利克雷级数研究
  • 批准号:
    12J01376
  • 财政年份:
    2012
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ワイル群多重ディリクレ級数の組合せ論的表現論からの解明
从组合表示论阐释Weyl群多重狄利克雷级数
  • 批准号:
    23840035
  • 财政年份:
    2011
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
d-complete posetの組合せ論的及び表現論的研究
d-完备偏序集的组合和表征研究
  • 批准号:
    13740012
  • 财政年份:
    2001
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
代数的組合せ論とその表現論への応用
代数组合学及其在表示论中的应用
  • 批准号:
    98J05286
  • 财政年份:
    1998
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
古典群,量子群,ヘッケ環の表現論と組合せ論
经典群、量子群和赫克代数的表示论和组合学
  • 批准号:
    08211102
  • 财政年份:
    1996
  • 资助金额:
    $ 3.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了