Study on the design method of robust auto-tuning control systems for large-scale complex systems
大规模复杂系统鲁棒自整定控制系统设计方法研究
基本信息
- 批准号:09650475
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. An efficient numerical algorithm for obtaining the H-infinity optimal PID controller is proposed. The original design problem is approximated as linear constraints for each frequency, and linear programming is applied. This method can be applied to the design of a decentralized PID controller, which is a future work.2. Nonlinearity is one of the major cause of complexity of the control system, and in order to decrease the difficulty caused by the nonlinearity, a few design methods and their applications are examined. First, the design method of anti-windup controller against input saturations is proposed. It guarantees the robust stability and can be applied to decentralized controller without any difficulty. Second, a design method examined is a two step liberalization of smooth nonlinearity and the application of linear controller design to the linearized model. This method is applied to a twin rotor helicopter model and its usefulness is shown experimentally. Lastly, a parallel supporting damper with tendon is proposed as a new actuator structure for the control of a flexible beam, and robust control design method is applied to compensate for the unmodelled higher modes.3. As a large scale complex system, a hybrid system which is composed of linear time-invariant subsystems dynamically connected is examined from the viewpoints of continuity and well-posedness of solutions. Basic analytical properties and the conditions are clarified. It is expected that this result is extended to the control design of hybrid systems.
1.提出了一种获得H ∞最优PID控制器的有效数值算法。原始设计问题近似为每个频率的线性约束,并应用线性规划。该方法可以应用于分散PID控制器的设计,是一个有发展前途的工作.非线性是导致控制系统复杂性的主要原因之一,为了减少非线性给控制系统设计带来的困难,本文介绍了几种设计方法及其应用。首先,针对输入饱和问题,提出了抗饱和控制器的设计方法。它保证了鲁棒稳定性,并可以应用于分散控制器没有任何困难。其次,研究的设计方法是平滑非线性的两步自由化和线性控制器设计的线性化模型的应用。将该方法应用于双旋翼直升机模型,并通过实验验证了该方法的有效性。最后,本文提出了一种新型的柔性梁控制作动器结构--平行支承带筋阻尼器,并采用鲁棒控制设计方法对未建模高阶模态进行补偿.作为一个大规模复杂系统,混杂系统是由线性定常子系统动态连接,从连续性和适定性的观点来研究。阐明了基本的分析性质和条件。这一结果有望推广到混杂系统的控制设计中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
和田信敬: "ロバスト安定性を考慮したAnti-Windup補償器の設計"電気学会論文誌C. 119-C. 734-739 (1999)
Nobutaka Wada:“考虑鲁棒稳定性的抗饱和补偿器的设计”日本电气工程师学会汇刊 C. 734-739 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masani Saeki: "A new adaptive identification method of critical loop gain for multi-input multi-output plants"proc.of the 37th IEEE Confereace on Decision and Control. 3984-3989 (1998)
Masani Saeki:第 37 届 IEEE 决策与控制会议论文集“多输入多输出设备关键环路增益的新自适应识别方法”。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Junichi Imura: "Well-posedness of a class of dynamically interconnected systems"Proc.of the 38th Conference on Decision and Control. 3031-3036 (1999)
Junichi Imura:“一类动态互连系统的适定性”第 38 届决策与控制会议论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
井村順一: "解の凸結合によるハミルトン・ヤコビ不等式の近似解の改良法" 計測自動制御学会論文集. 34・8. 1070-1077 (1998)
Junichi Imura:“通过解决方案的凸组合改进 Hamilton-Jacobi 不等式的近似解”,仪器与控制工程师学会会刊 34・8(1998 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
和田信敬: "ロバスト安定性を保証する静的Anti-Windup補償器の設計"システム制御情報学会論文誌. 12・11. 664-670 (1999)
Nobutaka Wada:“保证鲁棒稳定性的静态抗饱和补偿器的设计”,系统、控制和信息工程师学会汇刊 12/11 (1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAEKI Masami其他文献
SAEKI Masami的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAEKI Masami', 18)}}的其他基金
Construction of a data-driven design method of a nonlinear controller that has affine tuning parameters
具有仿射调节参数的非线性控制器的数据驱动设计方法的构建
- 批准号:
22560447 - 财政年份:2010
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Data-driven controller design and control performance assessmentby using input-output data in normal operation
利用正常运行时的输入输出数据进行数据驱动的控制器设计和控制性能评估
- 批准号:
19560443 - 财政年份:2007
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design of robust autotuning control system based on model validation
基于模型验证的鲁棒自调谐控制系统设计
- 批准号:
12650448 - 财政年份:2000
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
New nonlinear control based on specific state transitions---to represent nonlinear systems by switching linear systems
基于特定状态转移的新型非线性控制——通过切换线性系统来表示非线性系统
- 批准号:
23K03911 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an input identification based on nonlinear control for seismic waves inducing critical responses, with its experimental validation
开发基于非线性控制的地震波诱发临界响应的输入识别方法并进行实验验证
- 批准号:
22K18838 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Construction of neural feedback and brain stimulation methods by nonlinear control for neural dynamics of ADHD
ADHD神经动力学非线性控制的神经反馈和脑刺激方法的构建
- 批准号:
22K12194 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear Control and Observer Designs for Flow-Transport Systems
流体传输系统的非线性控制和观察器设计
- 批准号:
2205117 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Advanced multivariable nonlinear control methodology for matrix converters
用于矩阵转换器的先进多变量非线性控制方法
- 批准号:
DP220103928 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Projects
Investigation on a general nonlinear control based on mapping learning with controllability and reachability
基于映射学习的可控可达非线性控制研究
- 批准号:
21H03518 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometric, topological, and stochastic approaches in nonlinear control theory
非线性控制理论中的几何、拓扑和随机方法
- 批准号:
RGPIN-2016-05405 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Grants Program - Individual
Geometric, topological, and stochastic approaches in nonlinear control theory
非线性控制理论中的几何、拓扑和随机方法
- 批准号:
RGPIN-2016-05405 - 财政年份:2020
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Grants Program - Individual
Development and Experimental Validation of Nonlinear Control Theory for Tower Cranes
塔式起重机非线性控制理论的开发和实验验证
- 批准号:
20K04554 - 财政年份:2020
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and application of desktop validation method for nonlinear control systems based on numerical optimization and game theory
基于数值优化和博弈论的非线性控制系统桌面验证方法的开发与应用
- 批准号:
19K04279 - 财政年份:2019
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)