Nonlinear Evolution Equations and Elliptic Equations

非线性演化方程和椭圆方程

基本信息

  • 批准号:
    09440070
  • 负责人:
  • 金额:
    $ 7.49万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1999
  • 项目状态:
    已结题

项目摘要

Elliptic Equations (1) Concerning the equation (E) - △u = |u|ィイD1q-2ィエD1u x ∈Ω, u(x) = 0 x ∈∂Ω we obtained the following results.Let Ω = RィイD1NィエD1\BィイD2R1ィエD2, BィイD2RィエD2 = {x ∈ IRィイD1NィエD1 ; |x|【less than or equal】 R }, 2ィイD1*ィエD1<q< +∞ (2ィイD1*ィエD1 is the critical exponent for Sobolev's embedding HィイD31(/)0ィエD3 (Ω) ⊂ LィイD1qィエD1 (Ω) ), then (E) admits a radially symmetric solution in HィイD11ィエD1 (Ω) ∩ LィイD1qィエD1 (Ω). This fact has been conjectured from the duality between bounded domains and exterior domains.(II) Consider the equation : (E)ィイD2λィエD2 -△u = λu + |u|ィイD1q-2ィエD1u x ∈Ω, u(x) = 0 x ∈∂Ω (1) Let Ω = ΩィイD2dィエD2 × λRィイD1N-dィエD1, (ΩィイD2dィエD2 is a bounded domain in IRィイD1dィエD1), q = 2ィイD1*ィエD1, d【greater than or equal】 1, N 【greater than or equal】 4, then for all λ ∈ (0, λィイD21ィエD2), λィイD21ィエD2 = infィイD2v∈HィイD31(/)0ィエD3 (Ω)ィエD2‖∇ィイD2uィエD2‖LィイD42ィエD4ィイD12ィエD1/‖u‖LィイD42ィエD4ィイD22ィエD2 > 0, (E)ィイD2λィエD2 has a nontrivial solution, which gives a generalization of the well-known result of … More Brezis-Nirenberg to unbounded cylinders. (2) Let Ω = ΩィイD2dィエD2 x RィイD1N-dィエD1 and let ΩィイD2dィエD2 be a d-dimensional annulus. ・ If q 【greater than or equal】 NィイD2dィエD2 = 2 (N -d+1)/(N-d+1-2) , then (E)ィイD2λィエD2 admits no nontrivial weak solution.・ If q < NィイD2dィエD2, then (E)ィイD2λィエD2 admits a nontrivial weak solution.These results reveal the fact that the d-dimensional symmetry reduces the effective dimension by (d-1).(III) Consider (E)ィイD21ィエD2 -Δu + u = a(x) |u|ィイD1q-2ィエD1u + f(x) x ∈ IRィイD1NィエD1, 2 < q < 2ィイD1*ィエD1 o < a(x), |a(x) - 1| 【less than or equal】 CeィイD1λ|x|ィエD1, λ > 0 It is shown that if ‖f‖ィイD2H-1(RィイD1NィエD1)ィエD2 is sufficiently small, then (E)ィイD21ィエD2 has at least two positive solutions. Furthermore, we found that for the case where f = 0 and q < 2ィイD1*ィエD1 is close enugh to 2ィイD1*ィエD1,the multiplicity of positive solutions depends upon the topological property (su as category) of the set {x ∈Ω ; u(x) = maxィイD2x∈ΩィエD2 }.The analysis of this phenomenon will be an interesting subject to study in future.Parabolic Equations (I) It has been well known that weak solutions of porous medium equations enjoy the Holder continuity. However, the existence of smooth (local) solutions has been left as an open problem for long time. Otani-Sugiyama gave an affirmative answer to this open problem, by developing the LィイD1∞ィエD1-energy method, which was introduce by themselves to show the local existence of WィイD11,∞ィエD1-solutions for more general doubly nonlinear parabolic equations. This is the most fascinating result among our results obtained in this reseach project.(II) It was left as an unsolved problem to determine the asymptotic behabiour of solutions of (P) uィイD2tィエD2, -Δu = |u|ィイD12ィイD1*ィエD1-2ィエD1u x∈Ω, u(x) = 0 x∈∂Ω. To this problem, the following partial answer was obtained. 「Let Ω = {x ∈ RィイD1nィエD1 : |x|< 1 } and the solution u (x.t) be positive, radially symmetric and monotone decreasing with respect to r = |x|. Then u blows up in a finite time or becomes a global solution and satisfies the following property : 「There exists a sequence {tィイD2nィエD2 } such that |∇u (x,tィイD2nィエD2)|ィイD12ィエD1 - CoィイD1δィエD1(0) (u - x), |u (x,tィイD2nィエD2)|ィイD12ィエD1 - CoィイD1σィエD1(0) (u - x). 」 This result give some information about the problem above to some extent. However, since strong technical condtions are assumed. We need further in vestigation to solve this problem in a natural setting. Less
对于方程(E) -△u = |u| x∈Ω, u(x) = x∈∂Ω,我们得到如下结果。让Ω= RィイD1NィエD1 \ BィイD2R1ィエD2, BィイD2RィエD2 = {x∈红外ィイD1NィエD1;|x|【小于或等于】R}, 2 D1* D1<q< +∞(2 D1* D1是Sobolev嵌入H D31(/)0 D3 (Ω) L D1q D1 (Ω))的临界指数,那么(E)在H D11 D1 (Ω)∩L D1q D1 (Ω)中承认一个径向对称解。这一事实是由有界域与外域之间的对偶性推测出来的。(二)考虑如下等式:(E)ィイD2λィエD2 -△u =λu + | |ィイD1q-2ィエD1u x∈Ω,u (x) = 0 x∈∂Ω(1)让Ω=ΩィイD2dィエD2×λRィイD1N-dィエD1,(ΩィイD2dィエD2是红外的有限域ィイD1dィエD1), q = 2ィイD1 *ィエD1, d【大于或等于】1,N【大于或等于】4,然后对所有λ∈(0,λィイD21ィエD2),λィイD21ィエD2 = infィイD2v∈HィイD31(/) 0ィエD3(Ω)ィエD2为∇ィイD2uィエD2为LィイD42ィエD4ィイD12ィエD1 /为u为LィイD42ィエD4ィイD22摊位ィエD2 > 0, (E)ィイD2λィエD2非平凡解,它将著名的…More Brezis-Nirenberg结果推广到无界圆柱体。(2)设Ω = Ω D2d D2 × R D1N-d D1,设Ω D2d D2为d维环。·如果q【大于等于】N D2d D2 = 2 (N-d+1)/(N-d+1-2),则(E) D2λ D2不存在非平凡弱解。·如果q < N μ u \ \ D2d μ u \ D2,则(E) μ u \ D2λ μ u \ D2存在一个非平凡弱解。这些结果揭示了d维对称性使有效维数减少(d-1)的事实。(3)考虑(E)ィイD21ィエD2 -Δu + u = u (x) | |ィイD1q-2ィエD1u + f (x) x∈红外ィイD1NィエD1, 2 < q < 2ィイD1 *ィエD1 o < (x), | (x) - 1 |【小于或等于】CeィイD1λx | |ィエD1,λ> 0表明如果为f为ィイD2H-1 (RィイD1NィエD1)ィエD2是足够小,那么(E)ィイD21ィエD2至少有两个正解。进一步地,我们发现对于f = 0且q < 2 D1* D1足够接近于2 D1* D1的情况,正解的多重性依赖于集合{x∈Ω;u(x) = max D2x∈Ω D2}。对这一现象的分析将是未来一个有趣的研究课题。抛物方程(一)多孔介质方程的弱解具有Holder连续性。然而,光滑(局部)解的存在性长期以来一直是一个悬而未决的问题。对于这个开放问题,Otani-Sugiyama给出了一个肯定的答案,他提出了一种能量法,用于证明更一般的双非线性抛物方程的W′′_(_)_(_)_(_)_(_)_(_)_(_)_(_)_(_)_()解的局部存在性。这是我们在这个研究项目中得到的最令人着迷的结果。(2)它是一个尚未解决的问题(P)的确定解的渐近behabiour uィイD2tィエD2 -Δu = | |ィイD12ィイD1 *ィエD1-2ィエD1u x∈Ω,u (x) = 0 x∈∂Ω。对于这个问题,得到了以下部分答案。令Ω = {x∈R γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ。然后u炸毁在一个有限的时间或成为一个全球性的解决方案,满足以下属性:“存在一个序列{tィイD2nィエD2}这样|∇u (x, tィイD2nィエD2) |ィイD12ィエD1 - CoィイD1δィエD1 (0) (u - x) | u (x, tィイD2nィエD2) |ィイD12ィエD1 - CoィイD1σィエD1 (0) (u - x)”。这一结果给出一些信息上面的问题在某种程度上。但是,由于假定有很强的技术条件。为了在自然环境中解决这个问题,我们需要进一步的调查。少

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M. Tsutsumi: "Regional blow up of solutions to the initial-boundary value problem for U_t=U^δ(△u+u)" Proceedings of the Royal Society of Ed.127A. 871-887 (1997)
M. Tsutsumi:“U_t=U^δ(△u+u) 的初始边界值问题的区域爆炸”英国皇家学会论文集 Ed.127A (1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Ichikawa and Yoshio Yamada: "Some remarks on global solutions to quasilinear parabolic system with cross-diffusion"to appear in Funkcial. Ekvac..
T.Ichikawa 和 Yoshio Yamada:“关于具有交叉扩散的拟线性抛物线系统的全局解决方案的一些评论”出现在 Funkcial 上。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.KODA and Takashi SUZUKI: "A note on the blow-up pattern for a parabolic equation."J. Math. Tokushima Univ.. vol.32. 19-25 (1998)
A.KODA 和 Takashi SUZUKI:“关于抛物线方程的爆炸模式的注释。”J.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Takeuchi and Yoshio Yamada: "Asymptotic properties of a reaction-diffusion equation with degenerate p-Laplacian"Nonlinear Anal. TMA. (to appear).
S.Takeuchi 和 Yoshio Yamada:“具有简并 p-拉普拉斯的反应扩散方程的渐近性质”非线性分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OTANI Mitsuharu其他文献

OTANI Mitsuharu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OTANI Mitsuharu', 18)}}的其他基金

Synthetic study of nonlinear evolution equation and its related topics
非线性演化方程及其相关课题的综合研究
  • 批准号:
    21340032
  • 财政年份:
    2009
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Integrated Study for Nonlinear Evolution Equations and Nonlinear Elliptic Equations
非线性演化方程与非线性椭圆方程的综合研究
  • 批准号:
    16340043
  • 财政年份:
    2004
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on Nonlinear Evolution Equations and Nonlinear Elliptic Equations
非线性演化方程和非线性椭圆方程的研究
  • 批准号:
    12440051
  • 财政年份:
    2000
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Nonlinear Elliptic Equations and Systems, and Applications
非线性椭圆方程和系统以及应用
  • 批准号:
    2247410
  • 财政年份:
    2023
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Standard Grant
CAREER: Singular and Global Solutions to Nonlinear Elliptic Equations
职业:非线性椭圆方程的奇异和全局解
  • 批准号:
    2143668
  • 财政年份:
    2022
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Continuing Grant
Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
  • 批准号:
    2208321
  • 财政年份:
    2022
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Standard Grant
A Compactness Analysis for Critical Elliptic Equations of the Caffarelli-Kohn-Nirenberg Type and Applications to Questions of Existence and Multiplicity
Caffarelli-Kohn-Nirenberg型临界椭圆方程的紧致性分析及其在存在性和多重性问题中的应用
  • 批准号:
    546917-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Harmonic Analysis and Homogenization of Elliptic Equations in Perforated Domains
穿孔域椭圆方程的调和分析与齐次化
  • 批准号:
    2153585
  • 财政年份:
    2022
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Standard Grant
Degenerate Elliptic Equations: Regularity of weak solutions with applications
简并椭圆方程:弱解的正则性及其应用
  • 批准号:
    RGPIN-2018-06229
  • 财政年份:
    2022
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Discovery Grants Program - Individual
Regularity Problems in Elliptic Equations
椭圆方程中的正则性问题
  • 批准号:
    2243869
  • 财政年份:
    2022
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Standard Grant
A Compactness Analysis for Critical Elliptic Equations of the Caffarelli-Kohn-Nirenberg Type and Applications to Questions of Existence and Multiplicity
Caffarelli-Kohn-Nirenberg型临界椭圆方程的紧致性分析及其在存在性和多重性问题中的应用
  • 批准号:
    546917-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Properties of Solutions to Degenerate Elliptic Equations and Applications
简并椭圆方程解的性质及应用
  • 批准号:
    RGPIN-2017-04872
  • 财政年份:
    2021
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Discovery Grants Program - Individual
Fully Nonlinear Elliptic Equations
完全非线性椭圆方程
  • 批准号:
    2054973
  • 财政年份:
    2021
  • 资助金额:
    $ 7.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了