Harmonic Analysis and Homogenization of Elliptic Equations in Perforated Domains

穿孔域椭圆方程的调和分析与齐次化

基本信息

  • 批准号:
    2153585
  • 负责人:
  • 金额:
    $ 21.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Partial differential equations with rapidly oscillating coefficients are used to describe various processes in materials such as composite materials and porous media. The theory of homogenization, whose goal is to describe macroscopic properties of microscopically inhomogeneous or heterogeneous materials, shows that such strongly inhomogeneous material, whose characteristics change sharply with respect to space variables, may be approximately described via a homogenized or effective homogeneous material. As a result, the theory of homogenization of partial differential equations with rapidly oscillating coefficients has many important applications in physics, mechanics, and materials science. The long-term goal of this project is to establish optimal quantitative results in the homogenization theory for a large class of partial differential equations in various settings, arising in applications. The proposed research focuses on several challenging problems in the modelling of fluid flows and acoustic propagation in porous media and inclusions in composite materials. The new approaches and techniques to be developed will provide theoretical foundation and guidance for numerical simulations of diffusion processes in highly heterogenous media. Funding for this project provides support for training of Ph.D. students. The main focus of this project on quantitative homogenization of partial differential equations is on large-scale regularity properties and convergence rates for second-order elliptic equations and systems in perforated domains. More specifically, the problems investigated as part of the project include (1) uniform regularity estimates for Darcy’s law; (2) large-scale regularity estimates for Brinkman’s law; (3) elliptic equations and systems with periodic and high-contrast coefficients; and (4) boundary value problems in perforated domains. The resolution of these problems will provide a deeper understanding of some fundamental issues in periodic homogenization. This project lies at the interface of harmonic analysis and partial differential equations. Existing and new techniques from harmonic analysis are expected to play a significant role in the work of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
具有快速振荡系数的偏微分方程用于描述复合材料和多孔介质等材料的各种过程。均质化理论的目标是描述微观上不均匀或非均质材料的宏观性质,表明这种特性随空间变量急剧变化的强非均质材料可以通过均质化或有效均质材料来近似描述。因此,具有快速振荡系数的偏微分方程的均匀化理论在物理、力学和材料科学中有许多重要的应用。本项目的长期目标是为应用中出现的各种设置下的大类偏微分方程建立均匀化理论的最佳定量结果。提出的研究重点是多孔介质和复合材料包裹体中流体流动和声传播建模中的几个具有挑战性的问题。所开发的新方法和新技术将为高度非均质介质中扩散过程的数值模拟提供理论基础和指导。本项目的经费用于培养博士研究生。本项目在偏微分方程的定量均匀化方面的主要重点是研究二阶椭圆方程和系统在穿孔区域的大规模正则性和收敛速率。更具体地说,作为项目的一部分,研究的问题包括(1)达西定律的统一规则估计;(2) Brinkman定律的大尺度正则性估计;(3)具有周期系数和高对比系数的椭圆方程和系统;(4)穿孔区域的边值问题。这些问题的解决将使我们对周期均匀化的一些基本问题有更深入的了解。本课题是调和分析与偏微分方程的结合。现有的和新的谐波分析技术有望在该项目的工作中发挥重要作用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhongwei Shen其他文献

Boundary value problems in Morrey spaces for elliptic systems on Lipschitz domains
  • DOI:
    10.1353/ajm.2003.0035
  • 发表时间:
    2003-09
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Zhongwei Shen
  • 通讯作者:
    Zhongwei Shen
Vegetation change and human-environment interactions in the Qinghai Lake Basin, northeastern Tibetan Plateau, since the last deglaciation
末次冰消期以来青藏高原东北部青海湖流域植被变化及人地相互作用
  • DOI:
    10.1016/j.catena.2021.105892
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Naimeng Zhang;Xianyong Cao;Qinghai Xu;Xiaozhong Huang;Ulrike Herzschuh;Zhongwei Shen;Wei Peng;Sisi Liu;Duo Wu;Jian Wang;Huan Xia;Dongju Zhang;Fahu Chen
  • 通讯作者:
    Fahu Chen
A Cooperative Routing Protocol Based on Q-Learning for Underwater Optical-Acoustic Hybrid Wireless Sensor Networks
基于Q-Learning的水下光声混合无线传感器网络协作路由协议
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Zhongwei Shen;Hongxi Yin;Hongxi Yin;Yanjun Liang;Jianying Wang
  • 通讯作者:
    Jianying Wang
Advanced skeleton-based action recognition via spatial–temporal rotation descriptors
通过空间-时间旋转描述符进行先进的基于骨架的动作识别
  • DOI:
    10.1007/s10044-020-00952-y
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zhongwei Shen;Xiao-Jun Wu;Josef Kittler
  • 通讯作者:
    Josef Kittler
Pre-industrial cyanobacterial dominance in Lake Moon (NE China) revealed by sedimentary ancient DNA
沉积古DNA揭示了月亮湖(中国东北)工业化前蓝藻的优势
  • DOI:
    10.1016/j.quascirev.2021.106966
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Jifeng Zhang;Jianbao Liu;Yanli Yuan;Aifeng Zhou;Jie Chen;Zhongwei Shen;Shengqian Chen;Zhiping Zhang;Ke Zhang
  • 通讯作者:
    Ke Zhang

Zhongwei Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhongwei Shen', 18)}}的其他基金

Harmonic Analysis and Periodic Homogenization
谐波分析和周期性均匀化
  • 批准号:
    1856235
  • 财政年份:
    2019
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Standard Grant
Harmonic Analysis and Quantitative Homogenization
谐波分析和定量均质化
  • 批准号:
    1600520
  • 财政年份:
    2016
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Continuing Grant
Harmonic Analysis and Homogenization of Partial Differential Equations
偏微分方程的调和分析与齐次化
  • 批准号:
    1161154
  • 财政年份:
    2012
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Standard Grant
Harmonic Analysis and Elliptic Homogenization Problems
谐波分析和椭圆均匀化问题
  • 批准号:
    0855294
  • 财政年份:
    2009
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Continuing Grant
Elliptic Boundary Value Problems in Non-Smooth Domains
非光滑域中的椭圆边值问题
  • 批准号:
    0500257
  • 财政年份:
    2005
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Standard Grant
Harmonic Analysis and Problems in Mathematical Physics
数学物理中的调和分析与问题
  • 批准号:
    9732894
  • 财政年份:
    1998
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Boundary Value Problems, Unique Continuation and Schrodinger Operators
数学科学:边值问题、唯一连续和薛定谔算子
  • 批准号:
    9596266
  • 财政年份:
    1995
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Boundary Value Problems, Unique Continuation and Schrodinger Operators
数学科学:边值问题、唯一连续和薛定谔算子
  • 批准号:
    9500635
  • 财政年份:
    1995
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Partial Differential Equations in Nonsmooth Domains
数学科学:非光滑域中的偏微分方程
  • 批准号:
    9201208
  • 财政年份:
    1992
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Qualitative and quantitative analysis of non-periodic space-time homogenization problems for nonlinear diffusion equations
非线性扩散方程非周期时空均匀化问题的定性和定量分析
  • 批准号:
    22K20331
  • 财政年份:
    2022
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Developments of Homogenization Techniques of Soft Magnetic Composite in Magnetic Field Analysis and Design of Design of Small High Frequency Reactor
软磁复合材料均匀化技术在小型高频电抗器磁场分析与设计中的进展
  • 批准号:
    19K04354
  • 财政年份:
    2019
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Harmonic Analysis and Periodic Homogenization
谐波分析和周期性均匀化
  • 批准号:
    1856235
  • 财政年份:
    2019
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Standard Grant
Improvements to the homogenization of brain samples prior to extraction and UHPLC-MS/MS analysis
提取和 UHPLC-MS/MS 分析之前脑样本均质化的改进
  • 批准号:
    488278-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Stochastic homogenization for uncertainty quantification in multiscale analysis
多尺度分析中不确定性量化的随机均质化
  • 批准号:
    16KT0129
  • 财政年份:
    2016
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Harmonic Analysis and Quantitative Homogenization
谐波分析和定量均质化
  • 批准号:
    1600520
  • 财政年份:
    2016
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Continuing Grant
Development of new homogenization method for efficient electromagnetic analysis and its application
高效电磁分析均化新方法的开发及其应用
  • 批准号:
    26420233
  • 财政年份:
    2014
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Harmonic Analysis and Homogenization of Partial Differential Equations
偏微分方程的调和分析与齐次化
  • 批准号:
    1161154
  • 财政年份:
    2012
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Standard Grant
Harmonic Analysis and Elliptic Homogenization Problems
谐波分析和椭圆均匀化问题
  • 批准号:
    0855294
  • 财政年份:
    2009
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Continuing Grant
Analytical prediction and homogenization analysis of grain fining effects using a strain gradient plasticity theory
使用应变梯度塑性理论对晶粒细化效果进行分析预测和均匀化分析
  • 批准号:
    19360048
  • 财政年份:
    2007
  • 资助金额:
    $ 21.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了