MAPPING FUNCTIONAL CONNECTIVITY WITH FLUORESCENCE MOLECULAR TOMOGRAPHY
使用荧光分子断层扫描绘制功能连接图
基本信息
- 批准号:10160971
- 负责人:
- 金额:$ 56.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:ARHGEF5 geneAgingAlzheimer&aposs DiseaseAnatomyAstrocytesBiological AssayBloodBlood VesselsBrainBrain regionCalciumCalcium SignalingCellsComputer softwareCoupledCouplingDataDevelopmentDiseaseEvolutionFormulationFunctional Magnetic Resonance ImagingGene ExpressionGenetic EngineeringGenetically Engineered MouseGlial Fibrillary Acidic ProteinGrantHeadHemoglobinHistologyHumanImageIschemic StrokeLightLightingMapsMeasuresMethodsModelingMolecularMonte Carlo MethodMusNatureNeuronsNoiseOptical TomographyOpticsPatternPerformancePhysiologicalPhysiologyReproducibilityRestSamplingSignal TransductionSpecificitySpeedStrokeStructureSystemTechniquesTechnologyUncertaintyValidationbasecalcium indicatorcell typecerebral hemodynamicscontrast imagingdata analysis pipelinedata modelingdesigndetectordiffuse optical tomographyflexibilityfluorescence molecular tomographyhemodynamicsimaging systemimprovedin vivo evaluationinstrumentationmouse modelnervous system disorderneuroimagingneurovascular couplingnon-invasive imagingoptical imagingpostnatalrelating to nervous systemstroke modelstroke recoverytomography
项目摘要
Project Summary:
Functional mapping of spontaneous brain activity with resting-state functional connectivity (FC) analysis
of fMRI data has recently become a dominant approach to mapping human brain function and continues
to gain momentum. However fMRI is based on cerebral hemodynamics that is relatively indirectly
coupled to neuronal activity and much slower (~0.3 Hz). Further the physiological underpinnings of FC
are relatively un-resolved, such that the mechanisms and implications altered FC are often unclear. For
example in ischemic stroke, it is well known that the penumbra surrounding the ischemic core has altered
neurovascular coupling (NVC), complicating the interpretation of the FC deficits. As FC measures are
extended further into studies of brain development, aging and disease, the importance of understanding
the fundamental basis for FC will grow. We recently developed hemodynamic mapping of functional
connectivity in mice using optical intrinsic signal imaging (fcOIS), and found fcOIS sensitive to several
neurological diseases, including mouse models of stroke and Alzheimer's disease. However, with the
advent of genetic engineering techniques for mice, there are new opportunities for extending optical
wide-field imaging to calcium activity, which is >10x faster and more directly coupled to neural activity
than hemoglobin. By combining calcium and hemodynamic imaging, there is the potential to quantify the
relationship between cell-specific calcium dynamics and hemodynamics throughout brain regions.
Further concurrent calcium and hemoglobin imaging could help resolve questions about the impact of
altered NVC in diseases such as stroke, and in early brain development. However, as yet, no imaging
system has been developed to examine these rich relationships throughout the mouse cortex. In this
project, we will develop optical imaging hardware and software for characterizing calcium dynamics in
mice engineered for genetically encoded calcium indicators (GECI's). For exemplar applications where
the functional networks are changing quickly, we will quantify FC during stroke recovery and brain
development, tracking the progression of both functional connectivity and neurovascular coupling (NVC).
Aim 1 will develop fluorescence molecular tomography (FMT) and diffuse optical tomography (DOT)
instrumentation for concurrent mapping of calcium and hemoglobin in mice. Aim 2 will optimize system
performance for high speed FMT/DOT of mouse brain function. Aim 3 will establish FMT/DOT for
mapping the functional networks of cell-specific calcium signals in mice with GECIs. Concurrent imaging
with hemoglobin will enable mapping of neurovascular coupling. In aim 4, with establish feasibility of
FMT/DOT in both stroke recovery and brain developmental. In both applications we will quantify calcium-
FC and the influence of altered NVC on hemoglobin-FC.
项目总结:
静息状态功能连接性(FC)分析脑自发活动的功能图
最近已经成为绘制人脑功能图的主要方法,而且还在继续
以获得动力。然而,功能磁共振成像是基于相对间接的脑血流动力学。
再加上神经元活动,速度要慢得多(~0.3赫兹)。进一步探讨FC的生理基础
都是相对未解决的,因此改变FC的机制和影响往往不清楚。为
例如在缺血性中风中,众所周知,缺血核心周围的半影区已经改变。
神经血管偶联(NVC),使FC缺陷的解释复杂化。由于FC措施是
进一步扩展到对大脑发育、衰老和疾病的研究,了解
FC的基本基础将会增长。我们最近开发了功能性的血流动力学标测
在小鼠中使用光学固有信号成像(FcOIS)进行连接,并发现fcOIS对几种
神经系统疾病,包括中风和阿尔茨海默病的小鼠模型。然而,随着
小鼠基因工程技术的出现,为扩展光学技术提供了新的机会
钙活动的广域成像,速度快10倍,更直接地与神经活动联系在一起
而不是血红蛋白。通过结合钙和血流动力学成像,有可能量化
细胞特异性钙动力学与整个脑区血流动力学的关系。
进一步同时进行钙和血红蛋白成像可能有助于解决有关
在中风等疾病和早期大脑发育中,NVC发生了变化。然而,到目前为止,还没有成像
已经开发了一种系统来检查整个小鼠皮质的这些丰富的关系。在这
项目,我们将开发用于表征钙动力学的光学成像硬件和软件
为基因编码的钙指示器(Geci‘s)设计的小鼠。对于示例应用程序,其中
功能网络正在快速变化,我们将量化中风恢复和脑内的功能障碍
发展,跟踪功能连接和神经血管偶联(NVC)的进展。
AIM 1将开发荧光分子断层扫描(FMT)和漫反射光学断层扫描(DOT)
同时绘制小鼠体内钙和血红蛋白图谱的仪器。目标2将优化系统
表现为小鼠脑功能的高速FMT/DOT。目标3将为以下目标建立FMT/DOT
定位GECI小鼠细胞特异性钙信号的功能网络。并发成像
与血红蛋白的结合将使神经血管偶联的映射成为可能。在目标4中,确定了
FMT/DOT在卒中康复和脑发育中的作用在这两个应用中,我们将量化钙-
Fc及改变NVC对Hb-Fc的影响。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effective Connectivity Measured Using Optogenetically Evoked Hemodynamic Signals Exhibits Topography Distinct from Resting State Functional Connectivity in the Mouse.
- DOI:10.1093/cercor/bhx298
- 发表时间:2018-01-01
- 期刊:
- 影响因子:0
- 作者:Bauer AQ;Kraft AW;Baxter GA;Wright PW;Reisman MD;Bice AR;Park JJ;Bruchas MR;Snyder AZ;Lee JM;Culver JP
- 通讯作者:Culver JP
Separability of calcium slow waves and functional connectivity during wake, sleep, and anesthesia.
- DOI:10.1117/1.nph.6.3.035002
- 发表时间:2019-07-01
- 期刊:
- 影响因子:5.3
- 作者:Brier, Lindsey M;Landsness, Eric C;Culver, Joseph P
- 通讯作者:Culver, Joseph P
Normalization of optical fluence distribution for three-dimensional functional optoacoustic tomography of the breast.
- DOI:10.1117/1.jbo.27.3.036001
- 发表时间:2022-03
- 期刊:
- 影响因子:3.5
- 作者:Park S;Brooks FJ;Villa U;Su R;Anastasio MA;Oraevsky AA
- 通讯作者:Oraevsky AA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH P CULVER其他文献
JOSEPH P CULVER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH P CULVER', 18)}}的其他基金
Naturalistic Brain Mapping in Children with Diffuse Optical Tomography
利用漫射光学断层扫描对儿童进行自然脑图绘制
- 批准号:
10720660 - 财政年份:2023
- 资助金额:
$ 56.7万 - 项目类别:
Cortical Network Modulation by Subthalamic Nucleus Deep Brain Stimulation
丘脑底核深部脑刺激的皮质网络调节
- 批准号:
10220160 - 财政年份:2019
- 资助金额:
$ 56.7万 - 项目类别:
Cortical Network Modulation by Subthalamic Nucleus Deep Brain Stimulation
丘脑底核深部脑刺激的皮质网络调节
- 批准号:
10452517 - 财政年份:2019
- 资助金额:
$ 56.7万 - 项目类别:
Cortical Network Modulation by Subthalamic Nucleus Deep Brain Stimulation
丘脑底核深部脑刺激的皮质网络调节
- 批准号:
9817262 - 财政年份:2019
- 资助金额:
$ 56.7万 - 项目类别:
Cortical Network Modulation by Subthalamic Nucleus Deep Brain Stimulation
丘脑底核深部脑刺激的皮质网络调节
- 批准号:
10009477 - 财政年份:2019
- 资助金额:
$ 56.7万 - 项目类别:
Wireless High-Density Diffuse Optical Tomography for Decoding Brain Activity
用于解码大脑活动的无线高密度漫射光学断层扫描
- 批准号:
10244979 - 财政年份:2018
- 资助金额:
$ 56.7万 - 项目类别:
Wireless High-Density Diffuse Optical Tomography for Decoding Brain Activity
用于解码大脑活动的无线高密度漫射光学断层扫描
- 批准号:
10000137 - 财政年份:2018
- 资助金额:
$ 56.7万 - 项目类别:
HIGH-DENSITY OPTICAL TOMOGRAPHY IN PATIENTS WITH COCHLEAR IMPLANTS
人工耳蜗患者的高密度光学断层扫描
- 批准号:
9755396 - 财政年份:2018
- 资助金额:
$ 56.7万 - 项目类别:
Wireless High-Density Diffuse Optical Tomography for Decoding Brain Activity
用于解码大脑活动的无线高密度漫射光学断层扫描
- 批准号:
9791172 - 财政年份:2018
- 资助金额:
$ 56.7万 - 项目类别:
USING DIFFUSE OPTICAL TOMOGRAPHY TO UNDERSTAND DEEP BRAIN STIMULATIONS IMPACT ON CORTICAL NETWORKS
使用漫射光学断层扫描来了解深部大脑刺激对皮质网络的影响
- 批准号:
9336002 - 财政年份:2016
- 资助金额:
$ 56.7万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 56.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




