QUANTITATIVE IMAGING BIOMARKERS OF TREATMENT RESPONSE AND PROGNOSIS IN BREAST CANCER
乳腺癌治疗反应和预后的定量成像生物标志物
基本信息
- 批准号:10168918
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdjuvantAdjuvant TherapyArtificial IntelligenceBiologicalBiological AssayBiological MarkersBiopsyBreast Cancer PatientCharacteristicsClinicalComplementDataDescriptorDiagnosisDiseaseERBB2 geneEnsureEnvironmentEosine YellowishEstrogen receptor positiveFoundationsFutureGenetic HeterogeneityGenomic approachGenomicsHeterogeneityHistologicHistologyImageIndividualKineticsLeadMRI ScansMagnetic Resonance ImagingMalignant NeoplasmsManualsMeasuresMedical ImagingMethodsModelingMolecularMolecular ProfilingMorbidity - disease rateMorphologyMultiomic DataNeoadjuvant TherapyNormal tissue morphologyOncologyPathologicPathologyPatientsPatternPhenotypeProspective cohortProteomicsProtocols documentationRecurrenceRegimenReproducibilityResearchRiskRoleSemanticsSiteSlideStainsSubgroupSurrogate MarkersTNMTestingTextureThe Cancer Genome AtlasTherapeuticToxic effectTumor BiologyValidationVariantWomanWorkautomated segmentationbasecancer subtypeschemotherapyclinical translationclinically relevantcohortcomputerized toolscontrast enhancedeffective therapyfeature extractiongenetic predictorsgenomic predictorshigh riskimage guidedimaging biomarkerimaging studyindividualized medicineinnovationintelligent algorithmmagnetic resonance imaging biomarkermalignant breast neoplasmmolecular markermolecular pathologymortalitymultimodalitymultiple omicsneglectoncotypeoutcome forecastoutcome predictionovertreatmentpatient stratificationpersonalized managementprecision medicinepredict clinical outcomeprimary endpointprognosticquantitative imagingradiologistresponseside effectsuccesssurvival predictionsynergismtargeted treatmenttooltranscriptomicstreatment responsetumortumor heterogeneity
项目摘要
ABSTRACT
Breast cancer is a heterogeneous disease. Around 20% to 30% of women diagnosed with invasive breast cancer
will have a recurrence and may eventually die of their disease. Currently, there are no reliable methods to identify
which cancers will recur on an individual basis. Because of this, adjuvant therapies are given to nearly all patients
with breast cancer, but benefit only a small proportion. A similar dilemma exists for neoadjuvant treatment, many
patients fail to pathologically response to chemotherapy, and yet suffer from the associated toxicity. The
conventional one-size-fits-all approach causes overtreatment, leading to morbidities and mortalities. To avoid
these side effects, biomarkers that stratify patients with clinical relevance are critically needed for precision
medicine in breast cancer. Molecular profiling is currently used to stratify breast cancer, but is limited by the
requirement for invasive biopsy and confounded by intra-tumor genetic heterogeneity. Conversely, imaging
provides a unique opportunity for the noninvasive interrogation of the tumor, its microenvironment, and invasion
to surrounding normal tissues. We hypothesize that imaging characteristics reflect underlying tumor biology, and
quantitative imaging features can provide independent valuable information, which are synergistic to known
clinical, histologic, and genetic predictors. Accordingly, we have planned three specific aims to develop new
quantitative imaging biomarkers for breast cancer, as well as clinically and biologically validate them. In Aim 1
we plan to develop automated computational tools to robustly quantify whole tumor, intratumor subregions, and
parenchyma phenotypes from multimodal MRI. The curated breast cancer cohort (n=504) from our preliminary
study will be analyzed, with available MRI scans and manually-delineated contours of tumor and parenchyma
by board-certified radiologists. In Aim 2 we will build imaging feature-based models to predict recurrence-free
survival and treatment response separately. By integrating with clinicopathologic and genomic predictors, the
comprehensive models can predict clinical outcomes more accurately. The internal cohort (n=450) will be used
for discovery, and the multi-center prospective cohort from I-SPY (n=186) will be used for validation. In Aim 3
we will elucidate the biological underpinnings behind our newly identified prognostic and predictive imaging
biomarkers, by correlating them with biospecimen-derived phenotypes from the same tumor. In particular, we
will investigate multi-omics molecular data as well as tumor morphology from H&E stained pathology slides.
Three cohorts will be analyzed, including our internal cohort (n=450), the I-SPY cohort (n=186), and the TCGA
cohort (n=1095). For three proposed aims, we have carried preliminary studies to prove the feasibility. By
leveraging the richness of available well-annotated data and advanced artificial intelligence algorithms, it will
increase the likelihood of success. Our proposed research will point new biomarkers of high value to better
predict recurrence and treatment response at the individual level, and lead to better treatment decisions for
women with breast cancer.
摘要
乳腺癌是一种异质性疾病。约20%至30%的女性被诊断为浸润性乳腺癌
会复发,并可能最终死于他们的疾病。目前,还没有可靠的方法来识别
哪些癌症会在个体基础上复发。正因为如此,几乎所有的患者都会接受辅助治疗。
乳腺癌患者,但受益比例很小。新辅助治疗也存在类似的困境,许多
患者对化疗没有病理反应,但仍遭受相关毒性。这个
传统的一刀切的方法会导致过度治疗,导致疾病和死亡。为了避免
这些副作用、对患者进行临床分层的生物标记物对于精确度来说是非常必要的。
乳腺癌的医学。分子图谱目前被用于乳腺癌的分层,但受到
对侵入性活检的要求,以及肿瘤内遗传异质性的混淆。相反,成像
为非侵入性询问肿瘤及其微环境和侵袭性提供了独特的机会
到周围的正常组织。我们假设成像特征反映了潜在的肿瘤生物学,并且
定量成像特征可以提供独立的有价值的信息,这些信息与已知的
临床、组织学和遗传预测因子。因此,我们计划了三个具体目标来开发新的
乳腺癌的定量成像生物标记物,以及临床和生物学验证。在目标1中
我们计划开发自动化计算工具,以强有力地量化整个肿瘤、瘤内亚区域和
来自多模式磁共振成像的实质表型。我们初步筛选的乳腺癌队列(n=504)
研究将通过可用的MRI扫描和手动描绘的肿瘤和实质轮廓进行分析
由委员会认证的放射科医生提供。在目标2中,我们将构建基于成像特征的模型来预测无复发
生存和治疗反应分开。通过结合临床病理和基因组预测因子,
综合模型可以更准确地预测临床结果。将使用内部队列(n=450)
用于发现,来自I-SPY(n=186)的多中心预期队列将用于验证。在AIM 3中
我们将阐明我们新发现的预测和预测成像背后的生物学基础。
生物标记物,通过将它们与来自同一肿瘤的生物谱系衍生的表型相关联。特别是,我们
将研究多组学分子数据以及H&E染色病理切片中的肿瘤形态。
将分析三个队列,包括我们的内部队列(n=450)、i-spy队列(n=186)和TCGA
队列(n=1095)。对于三个拟议目标,我们已经进行了初步研究,以证明其可行性。通过
利用丰富的可用数据和先进的人工智能算法,它将
增加成功的可能性。我们提出的研究将把新的高价值生物标志物指向更好的
在个体层面预测复发和治疗反应,并导致更好的治疗决策
患有乳腺癌的女性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jia Wu其他文献
Jia Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jia Wu', 18)}}的其他基金
QUANTITATIVE IMAGING BIOMARKERS OF TREATMENT RESPONSE AND PROGNOSIS IN BREAST CANCER
乳腺癌治疗反应和预后的定量成像生物标志物
- 批准号:
10454417 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
QUANTITATIVE IMAGING BIOMARKERS OF TREATMENT RESPONSE AND PROGNOSIS IN BREAST CANCER
乳腺癌治疗反应和预后的定量成像生物标志物
- 批准号:
10222593 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
Countering sympathetic vasoconstriction during skeletal muscle exercise as an adjuvant therapy for DMD
骨骼肌运动期间对抗交感血管收缩作为 DMD 的辅助治疗
- 批准号:
10735090 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
The ESCAPE clinical trial of circulating tumor DNA to guide adjuvant therapy in chemo-resistant triple negative breast cancer
循环肿瘤 DNA 指导化疗耐药三阴性乳腺癌辅助治疗的 ESCAPE 临床试验
- 批准号:
494901 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Operating Grants
A Type I Hybrid Effectiveness-Implementation Trial to Evaluate a Navigation-Based Multilevel Intervention to Decrease Delays Starting Adjuvant Therapy Among Patients with Head and Neck Cancer
一项 I 型混合有效性实施试验,用于评估基于导航的多级干预措施,以减少头颈癌患者开始辅助治疗的延迟
- 批准号:
10714537 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Multi-modal machine learning to guide adjuvant therapy in surgically resectable colorectal cancer
多模式机器学习指导可手术切除结直肠癌的辅助治疗
- 批准号:
10588103 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Efficacy of ethanol adjuvant therapy after resection of malignant soft tissue tumors
恶性软组织肿瘤切除术后乙醇辅助治疗的疗效
- 批准号:
22K09407 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of immune response cells and development of novel adjuvant therapy for sublingual immunotherapy
免疫应答细胞的鉴定和舌下免疫治疗新型辅助疗法的开发
- 批准号:
21KK0287 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Pursuing molecular biomarkers to guide adjuvant therapy for HPV+ head and neck cancers after transoral robotic surgery
寻找分子生物标志物来指导经口机器人手术后 HPV 头颈癌的辅助治疗
- 批准号:
10357120 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Biomarker research using two prospective studies on preoperative and postoperative adjuvant therapy for pancreatic cancer
使用两项关于胰腺癌术前和术后辅助治疗的前瞻性研究进行生物标志物研究
- 批准号:
21K08700 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Personalized Resistant Starch as an Adjuvant Therapy for Pediatric Inflammatory Bowel Disease
个性化抗性淀粉作为小儿炎症性肠病的辅助治疗
- 批准号:
437315 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Studentship Programs
Tailored adjuvant therapy in POLE-mutated and p53-wildtype early stage endometrial cancer (TAPER)
POLE 突变和 p53 野生型早期子宫内膜癌 (TAPER) 的定制辅助治疗
- 批准号:
435603 - 财政年份:2020
- 资助金额:
$ 24.9万 - 项目类别:
Operating Grants














{{item.name}}会员




