Revealing substrates and phosphoproteome level function of human STE20 kinases
揭示人类 STE20 激酶的底物和磷酸化蛋白质组水平功能
基本信息
- 批准号:10171453
- 负责人:
- 金额:$ 11.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-25 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAmino AcidsApoptosisAspartateBindingBiologicalBiological ProcessBiotechnologyCell ProliferationCellsDataDevelopmentDiseaseDisease PathwayEngineeringEscherichia coliEventFamilyFunctional disorderGenomicsGlutamatesHumanHypertensionKnowledgeLengthMalignant NeoplasmsModificationMolecularOrganismOutcomePhosphoamino AcidsPhosphoproteinsPhosphorylationPhosphorylation SitePhosphoserinePhosphotransferasesPhysiologicalPlayPost-Translational Protein ProcessingPreparationProcessProductionProtein KinaseProteinsProteomeProteomicsRecombinantsRegulationResearchRoleSense CodonSignal TransductionSiteSpecificityStructureSystemTechnologyTerminator CodonTranslationscell motilitydrug candidatehuman diseaseimprovedinterestnew therapeutic targetnovelnovel strategiesnovel therapeuticsprogramsprotein protein interaction
项目摘要
Project summary
Protein phosphorylation is one of the most common and critical post-translational modifications governing
signaling cascades in humans. Phosphorylation of protein kinases governs their activity and regulation. The
importance of regulation by phosphorylation is further emphasized by the fact that protein kinases comprise
nearly 2% of the human proteome and numerous kinases have been implicated in processes that control cell
proliferation, motility, and apoptosis in healthy and diseased human cells. While identification of
phosphorylation sites within the human proteome has dramatically progressed in recent years, our
understanding of phosphorylation cascades is limited due to a distinct lack of knowledge of which kinases are
responsible for each phosphorylation event and the specific arrangement of phosphorylation sites leading to an
active kinase that phosphorylates its target substrate. Establishing direct connections of all human kinases to
the phosphoproteome and revealing a systems-level diagram of human signaling networks also remain
defining challenges. Since phosphorylation plays a central role in protein-protein interactions through phospho-
binding domains, new approaches that can address these questions in a comprehensive and unbiased fashion
are needed. Studying protein phosphorylation has been limited by the inability to generate phosphoproteins
with the specificity of natural systems. Genetically encoded non-standard amino acids (NSAAs) have recently
enabled site-specific incorporation of phosphoserine into proteins. We showed that a genomically recoded
organism (GRO), in which all TAG stop codons were converted to TAA and the deletion of RF-1, converted
TAG to an open sense codon dedicated for incorporating phosphoamino acids. Importantly, this technological
breakthrough enables site-specific expression of human phosphoproteins in an engineered bacterial system
(i.e., GRO containing phosphoserine orthogonal translation system, OTS). Furthermore, it provides a platform
technology to address questions probing the connectivity of the human kinome and the functional landscape of
phospho-binding domains. Here, we aim to further develop and apply this technology to generate optimized
platforms to address functional questions surrounding the phosphoserine component of the human
phosphoproteome (Aim 1). These new, enhanced platforms will enable studies to identify STE20 kinase
substrates that will directly inform future research into multiple human disease pathways as well as define a
general strategy to elucidate human kinase substrates (Aim 2). Finally, we aim to identify phosphorylation
sites that are drivers of protein-protein interactions in general, followed by, a systematic screen of the STE20
substrates in a coordinated effort to assign biological function to a portion of the human phosphoproteome
(Aim 3).
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farren J. Isaacs其他文献
Synthetic biology: Automated design of RNA devices.
合成生物学:RNA 装置的自动化设计。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:14.8
- 作者:
Farren J. Isaacs - 通讯作者:
Farren J. Isaacs
Tough Hydrogel-Based Biocontainment of Engineered Organisms for Continuous, Self-Powered Sensing and Computation
基于坚韧水凝胶的工程生物生物防护,可实现连续自供电传感和计算
- DOI:
10.1101/2020.02.11.941120 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Tzu;E. Tham;Xinyue Liu;Kevin Yehl;A. J. Rovner;H. Yuk;Farren J. Isaacs;Xuanhe Zhao;T. Lu - 通讯作者:
T. Lu
Erratum to: The real cost of sequencing: scaling computation to keep pace with data generation
勘误表:测序的实际成本:扩展计算以跟上数据生成的步伐
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:12.3
- 作者:
Paul Muir;Shantao Li;S. Lou;Daifeng Wang;Daniel Spakowicz;L. Salichos;Jing Zhang;G. Weinstock;Farren J. Isaacs;J. Rozowsky;M. Gerstein - 通讯作者:
M. Gerstein
Computational design and construction of an Escherichia coli strain engineered to produce a non-standard amino acid
用于生产非标准氨基酸的大肠杆菌菌株的计算设计和构建
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ali R. Zomorrodi;C. Hemez;Pol Arranz‐Gibert;Terrence Wu;Farren J. Isaacs;D. Segrè - 通讯作者:
D. Segrè
Corrigendum: Recoded organisms engineered to depend on synthetic amino acids
勘误表:重新编码的生物体被改造为依赖于合成氨基酸
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:64.8
- 作者:
A. J. Rovner;A. Haimovich;Spencer R. Katz;Zhe Li;Michael W. Grome;Brandon M. Gassaway;M. Amiram;Jaymin R. Patel;Ryan R. Gallagher;J. Rinehart;Farren J. Isaacs - 通讯作者:
Farren J. Isaacs
Farren J. Isaacs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farren J. Isaacs', 18)}}的其他基金
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
- 批准号:
10263259 - 财政年份:2020
- 资助金额:
$ 11.77万 - 项目类别:
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
- 批准号:
10097168 - 财政年份:2020
- 资助金额:
$ 11.77万 - 项目类别:
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
- 批准号:
10618236 - 财政年份:2020
- 资助金额:
$ 11.77万 - 项目类别:
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
- 批准号:
10430283 - 财政年份:2020
- 资助金额:
$ 11.77万 - 项目类别:
Expanding the genetic code with phosphotyrosine and phosphothreonine
用磷酸酪氨酸和磷酸苏氨酸扩展遗传密码
- 批准号:
10062991 - 财政年份:2017
- 资助金额:
$ 11.77万 - 项目类别:
Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
- 批准号:
10380150 - 财政年份:2015
- 资助金额:
$ 11.77万 - 项目类别:
Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
- 批准号:
10207998 - 财政年份:2015
- 资助金额:
$ 11.77万 - 项目类别:
Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
- 批准号:
10592390 - 财政年份:2015
- 资助金额:
$ 11.77万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 11.77万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 11.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 11.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 11.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 11.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 11.77万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 11.77万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 11.77万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 11.77万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 11.77万 - 项目类别: