Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
基本信息
- 批准号:10592390
- 负责人:
- 金额:$ 34.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-25 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylationAmino AcidsBehaviorBinding ProteinsBiochemicalBiological AssayCell physiologyCellsChemicalsCodeCodon NucleotidesComplexDataDevelopmentDiseaseEnzymesEscherichia coliEssential GenesEvolutionExhibitsFoundationsGeneticGenetic CodeGenome engineeringGenomicsGoalsHumanInternetLysineMediatingMethodsModalityMolecularNamesOrganismPatternPhosphoproteinsPhosphorylationPhosphoserinePhysiologicalPositioning AttributePost-Translational Protein ProcessingProtein Binding DomainProtein BiosynthesisProtein DynamicsProtein EngineeringProteinsProteomeProteomicsRecombinant ProteinsRecombinantsRegulationResearchRibosomesScaffolding ProteinSeriesSerineSet proteinSignal TransductionSiteSpecificityStructureSystemTechniquesTechnologyTerminator CodonTestingTranslationsWorkfitnessgenome editinghuman diseasemutantnew technologynew therapeutic targetnovelnovel strategiesnovel therapeuticsprotein activationprotein complexprotein protein interactionreconstitutionrelease factorsynthetic constructtoolyeast two hybrid system
项目摘要
Project Summary
Healthy and diseased physiological states are governed by a complex web of interacting proteins that confer the
collective behavior observed in cells. These protein networks are decorated with posttranslational modifications
(PTMs) that determine their structure, function, and impart specificity for cellular signaling. Phosphorylation and
acetylation represent two common PTMs that dictate healthy and disease states in human cells. For instance,
14-3-3 proteins scaffold thousands of important phosphoproteins with evidence suggesting that acetylation can
modify its function. Current progress toward the elucidation of PTM-mediated signaling networks is hampered
by the challenge of studying transient PTMs in cells and limited methods to produce proteins containing specific
combinations of modified amino acids. Our previous efforts utilized a recoded E. coli strain (i.e., genomically
recoded organism) to synthesize all human phosphoserine proteins using a genetic code expansion technique.
We expanded this work through the development of a two hybrid like technology, named HI-P. HI-P validated
previously observed phosphorylation dependent protein-protein interactions and identified scores of novel
phosphoserine-mediated interactions across the human proteome that have been validated in biochemical- and
cell-based assays. Our approach allows for synthetic DNA inputs to direct ribosome-based phosphoprotein
synthesis and thus creates a programmable genetic tool to study the human phosphoproteome at the molecular
level. Since deciphering complex protein networks require studying the impact of multiple PTMs in isolation and
in combination, the key contribution of the proposed research is expected to expand the ability to genetically
encode phosphoserine and acetylation at precise positions in 14-3-3 proteins to reveal PTM-mediated protein-
protein interactions. Specific Aims: In this proposal, we seek to leverage a strong foundation of technologies,
expertise, and preliminary data to construct a recoded E. coli with a single stop codon (two open codons) (Aim
1), develop a protein synthesis system capable of simultaneous encoding of phosphorylated and acetylated
amino acids into proteins (Aim 2), and employ these capabilities to deconvolute PTM-mediated 14-3-3 protein
network interactions (Aim 3). Significance: This work will be significant because it will enable the expression of
programmable human proteins containing two PTMs thereby establishing a new approach to decipher complex
human signaling networks at the molecular level. We anticipate this work will elucidate novel 14-3-3 protein
network interactions governed by PTMs and enable new research into biomolecular and protein mechanisms
that can be used to develop new therapies for human disease.
项目概要
健康和患病的生理状态由相互作用的蛋白质的复杂网络控制,这些蛋白质赋予
在细胞中观察到的集体行为。这些蛋白质网络经过翻译后修饰修饰
(PTM)决定其结构、功能并赋予细胞信号传导特异性。磷酸化和
乙酰化代表了决定人类细胞健康和疾病状态的两种常见 PTM。例如,
14-3-3 蛋白支撑着数千个重要的磷蛋白,有证据表明乙酰化可以
修改其功能。目前阐明 PTM 介导的信号网络的进展受到阻碍
通过研究细胞中瞬时 PTM 的挑战以及生产含有特定蛋白的有限方法
修饰氨基酸的组合。我们之前的努力利用了重新编码的大肠杆菌菌株(即基因组
重新编码的生物体)使用遗传密码扩展技术合成所有人类磷酸丝氨酸蛋白。
我们通过开发一种名为 HI-P 的两种混合技术来扩展这项工作。 HI-P 验证
先前观察到的磷酸化依赖性蛋白质-蛋白质相互作用并确定了新的分数
磷酸丝氨酸介导的跨人类蛋白质组的相互作用已在生物化学和生物化学中得到验证
基于细胞的测定。我们的方法允许合成 DNA 输入来引导基于核糖体的磷蛋白
合成,从而创建一个可编程遗传工具来研究人类磷酸化蛋白质组的分子水平
等级。由于破译复杂的蛋白质网络需要单独研究多个 PTM 的影响,并且
综上所述,拟议研究的关键贡献预计将扩大遗传研究的能力
在 14-3-3 蛋白的精确位置编码磷酸丝氨酸和乙酰化,以揭示 PTM 介导的蛋白-
蛋白质相互作用。具体目标:在本提案中,我们寻求利用强大的技术基础,
专业知识和初步数据来构建具有单个终止密码子(两个开放密码子)的重新编码的大肠杆菌(目标
1)、开发能够同时编码磷酸化和乙酰化的蛋白质合成系统
将氨基酸转化为蛋白质(目标 2),并利用这些功能对 PTM 介导的 14-3-3 蛋白质进行解卷积
网络交互(目标 3)。意义:这项工作意义重大,因为它将能够表达
含有两个 PTM 的可编程人类蛋白质,从而建立了一种破译复合物的新方法
分子水平上的人类信号网络。我们预计这项工作将阐明新型 14-3-3 蛋白质
由 PTM 控制的网络相互作用使生物分子和蛋白质机制的新研究成为可能
可用于开发人类疾病的新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farren J. Isaacs其他文献
Synthetic biology: Automated design of RNA devices.
合成生物学:RNA 装置的自动化设计。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:14.8
- 作者:
Farren J. Isaacs - 通讯作者:
Farren J. Isaacs
Tough Hydrogel-Based Biocontainment of Engineered Organisms for Continuous, Self-Powered Sensing and Computation
基于坚韧水凝胶的工程生物生物防护,可实现连续自供电传感和计算
- DOI:
10.1101/2020.02.11.941120 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Tzu;E. Tham;Xinyue Liu;Kevin Yehl;A. J. Rovner;H. Yuk;Farren J. Isaacs;Xuanhe Zhao;T. Lu - 通讯作者:
T. Lu
Erratum to: The real cost of sequencing: scaling computation to keep pace with data generation
勘误表:测序的实际成本:扩展计算以跟上数据生成的步伐
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:12.3
- 作者:
Paul Muir;Shantao Li;S. Lou;Daifeng Wang;Daniel Spakowicz;L. Salichos;Jing Zhang;G. Weinstock;Farren J. Isaacs;J. Rozowsky;M. Gerstein - 通讯作者:
M. Gerstein
Computational design and construction of an Escherichia coli strain engineered to produce a non-standard amino acid
用于生产非标准氨基酸的大肠杆菌菌株的计算设计和构建
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ali R. Zomorrodi;C. Hemez;Pol Arranz‐Gibert;Terrence Wu;Farren J. Isaacs;D. Segrè - 通讯作者:
D. Segrè
Corrigendum: Recoded organisms engineered to depend on synthetic amino acids
勘误表:重新编码的生物体被改造为依赖于合成氨基酸
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:64.8
- 作者:
A. J. Rovner;A. Haimovich;Spencer R. Katz;Zhe Li;Michael W. Grome;Brandon M. Gassaway;M. Amiram;Jaymin R. Patel;Ryan R. Gallagher;J. Rinehart;Farren J. Isaacs - 通讯作者:
Farren J. Isaacs
Farren J. Isaacs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farren J. Isaacs', 18)}}的其他基金
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
- 批准号:
10263259 - 财政年份:2020
- 资助金额:
$ 34.67万 - 项目类别:
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
- 批准号:
10097168 - 财政年份:2020
- 资助金额:
$ 34.67万 - 项目类别:
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
- 批准号:
10618236 - 财政年份:2020
- 资助金额:
$ 34.67万 - 项目类别:
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
- 批准号:
10430283 - 财政年份:2020
- 资助金额:
$ 34.67万 - 项目类别:
Expanding the genetic code with phosphotyrosine and phosphothreonine
用磷酸酪氨酸和磷酸苏氨酸扩展遗传密码
- 批准号:
10062991 - 财政年份:2017
- 资助金额:
$ 34.67万 - 项目类别:
Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
- 批准号:
10380150 - 财政年份:2015
- 资助金额:
$ 34.67万 - 项目类别:
Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
- 批准号:
10207998 - 财政年份:2015
- 资助金额:
$ 34.67万 - 项目类别:
Revealing substrates and phosphoproteome level function of human STE20 kinases
揭示人类 STE20 激酶的底物和磷酸化蛋白质组水平功能
- 批准号:
10171453 - 财政年份:2015
- 资助金额:
$ 34.67万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 34.67万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 34.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 34.67万 - 项目类别:














{{item.name}}会员




