Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
基本信息
- 批准号:10380150
- 负责人:
- 金额:$ 36.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-25 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylationAmino AcidsBehaviorBinding ProteinsBiochemicalBiological AssayCell physiologyCellsChemicalsCodeCodon NucleotidesComplexDataDevelopmentDiseaseEnzymesEscherichia coliEssential GenesEvolutionExhibitsFoundationsGeneticGenetic CodeGenome engineeringGenomicsGoalsHumanInternetMediatingMethodsModalityMolecularNamesOrganismPatternPhosphoproteinsPhosphorylationPhosphoserinePhysiologicalPositioning AttributePost-Translational Protein ProcessingProtein Binding DomainProtein BiosynthesisProtein EngineeringProteinsProteomeProteomicsRecombinant ProteinsRecombinantsRegulationResearchRibosomesScaffolding ProteinSeriesSerineSet proteinSignal TransductionSiteSpecificityStructureSystemTechniquesTechnologyTerminator CodonTestingTranslationsWorkbasefitnessgenome editinghuman diseasemutantnew technologynew therapeutic targetnovelnovel strategiesnovel therapeuticsprogramsprotein activationprotein complexprotein protein interactionreconstitutionrelease factorsynthetic constructtoolyeast two hybrid system
项目摘要
Project Summary
Healthy and diseased physiological states are governed by a complex web of interacting proteins that confer the
collective behavior observed in cells. These protein networks are decorated with posttranslational modifications
(PTMs) that determine their structure, function, and impart specificity for cellular signaling. Phosphorylation and
acetylation represent two common PTMs that dictate healthy and disease states in human cells. For instance,
14-3-3 proteins scaffold thousands of important phosphoproteins with evidence suggesting that acetylation can
modify its function. Current progress toward the elucidation of PTM-mediated signaling networks is hampered
by the challenge of studying transient PTMs in cells and limited methods to produce proteins containing specific
combinations of modified amino acids. Our previous efforts utilized a recoded E. coli strain (i.e., genomically
recoded organism) to synthesize all human phosphoserine proteins using a genetic code expansion technique.
We expanded this work through the development of a two hybrid like technology, named HI-P. HI-P validated
previously observed phosphorylation dependent protein-protein interactions and identified scores of novel
phosphoserine-mediated interactions across the human proteome that have been validated in biochemical- and
cell-based assays. Our approach allows for synthetic DNA inputs to direct ribosome-based phosphoprotein
synthesis and thus creates a programmable genetic tool to study the human phosphoproteome at the molecular
level. Since deciphering complex protein networks require studying the impact of multiple PTMs in isolation and
in combination, the key contribution of the proposed research is expected to expand the ability to genetically
encode phosphoserine and acetylation at precise positions in 14-3-3 proteins to reveal PTM-mediated protein-
protein interactions. Specific Aims: In this proposal, we seek to leverage a strong foundation of technologies,
expertise, and preliminary data to construct a recoded E. coli with a single stop codon (two open codons) (Aim
1), develop a protein synthesis system capable of simultaneous encoding of phosphorylated and acetylated
amino acids into proteins (Aim 2), and employ these capabilities to deconvolute PTM-mediated 14-3-3 protein
network interactions (Aim 3). Significance: This work will be significant because it will enable the expression of
programmable human proteins containing two PTMs thereby establishing a new approach to decipher complex
human signaling networks at the molecular level. We anticipate this work will elucidate novel 14-3-3 protein
network interactions governed by PTMs and enable new research into biomolecular and protein mechanisms
that can be used to develop new therapies for human disease.
项目摘要
健康和患病的生理状态由相互作用的蛋白质的复杂网络控制,
在细胞中观察到的集体行为。这些蛋白质网络被翻译后修饰修饰
(PTM),其决定其结构、功能并赋予细胞信号传导的特异性。磷酸化和
乙酰化代表了两种常见的PTM,其决定了人细胞中的健康和疾病状态。比如说,
14-3-3蛋白质为数千种重要的磷蛋白提供支架,有证据表明乙酰化可以
修改其功能。目前对PTM介导的信号网络的阐明进展受阻
通过研究细胞中瞬时PTM的挑战和有限的方法来产生含有特异性的蛋白质,
修饰的氨基酸的组合。我们以前的努力利用了重新编码的E。大肠杆菌菌株(即,基因组学上
重新编码的生物体)使用遗传密码扩增技术合成所有人磷酸丝氨酸蛋白。
我们通过开发一种名为HI-P的双杂交技术扩展了这项工作。
先前观察到的磷酸化依赖性蛋白质-蛋白质相互作用,并确定了新的
磷酸丝氨酸介导的跨人类蛋白质组的相互作用已经在生物化学和生物化学中得到验证。
基于细胞的测定。我们的方法允许合成DNA输入指导核糖体磷蛋白
合成,从而创造了一个可编程的遗传工具,以研究人类磷酸化蛋白质组的分子水平。
水平由于破译复杂的蛋白质网络需要研究孤立的多个PTM的影响,
结合起来,拟议研究的关键贡献预计将扩大遗传学的能力,
在14-3-3蛋白质的精确位置编码磷酸丝氨酸和乙酰化,以揭示PTM介导的蛋白质-
蛋白质相互作用具体目标:在本提案中,我们寻求利用强大的技术基础,
专业知识和初步数据,以构建一个重新编码的E。大肠杆菌中有一个终止密码子(两个开放密码子)(目的
1)、开发能够同时编码磷酸化和乙酰化的蛋白质合成系统
氨基酸转化为蛋白质(目的2),并利用这些能力去卷积PTM介导的14-3-3蛋白
网络互动(目标3)。意义:这项工作将是重要的,因为它将使表达
含有两个PTM的可编程人类蛋白质,从而建立了一种新的方法来破译复杂的
在分子水平上的人类信号网络。我们预期这项工作将阐明新的14-3-3蛋白
由PTM控制的网络相互作用,使生物分子和蛋白质机制的新研究成为可能
可以用来开发治疗人类疾病的新疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farren J. Isaacs其他文献
Synthetic biology: Automated design of RNA devices.
合成生物学:RNA 装置的自动化设计。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:14.8
- 作者:
Farren J. Isaacs - 通讯作者:
Farren J. Isaacs
Tough Hydrogel-Based Biocontainment of Engineered Organisms for Continuous, Self-Powered Sensing and Computation
基于坚韧水凝胶的工程生物生物防护,可实现连续自供电传感和计算
- DOI:
10.1101/2020.02.11.941120 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Tzu;E. Tham;Xinyue Liu;Kevin Yehl;A. J. Rovner;H. Yuk;Farren J. Isaacs;Xuanhe Zhao;T. Lu - 通讯作者:
T. Lu
Erratum to: The real cost of sequencing: scaling computation to keep pace with data generation
勘误表:测序的实际成本:扩展计算以跟上数据生成的步伐
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:12.3
- 作者:
Paul Muir;Shantao Li;S. Lou;Daifeng Wang;Daniel Spakowicz;L. Salichos;Jing Zhang;G. Weinstock;Farren J. Isaacs;J. Rozowsky;M. Gerstein - 通讯作者:
M. Gerstein
Computational design and construction of an Escherichia coli strain engineered to produce a non-standard amino acid
用于生产非标准氨基酸的大肠杆菌菌株的计算设计和构建
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ali R. Zomorrodi;C. Hemez;Pol Arranz‐Gibert;Terrence Wu;Farren J. Isaacs;D. Segrè - 通讯作者:
D. Segrè
Corrigendum: Recoded organisms engineered to depend on synthetic amino acids
勘误表:重新编码的生物体被改造为依赖于合成氨基酸
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:64.8
- 作者:
A. J. Rovner;A. Haimovich;Spencer R. Katz;Zhe Li;Michael W. Grome;Brandon M. Gassaway;M. Amiram;Jaymin R. Patel;Ryan R. Gallagher;J. Rinehart;Farren J. Isaacs - 通讯作者:
Farren J. Isaacs
Farren J. Isaacs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farren J. Isaacs', 18)}}的其他基金
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
- 批准号:
10263259 - 财政年份:2020
- 资助金额:
$ 36.06万 - 项目类别:
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
- 批准号:
10097168 - 财政年份:2020
- 资助金额:
$ 36.06万 - 项目类别:
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
- 批准号:
10618236 - 财政年份:2020
- 资助金额:
$ 36.06万 - 项目类别:
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
- 批准号:
10430283 - 财政年份:2020
- 资助金额:
$ 36.06万 - 项目类别:
Expanding the genetic code with phosphotyrosine and phosphothreonine
用磷酸酪氨酸和磷酸苏氨酸扩展遗传密码
- 批准号:
10062991 - 财政年份:2017
- 资助金额:
$ 36.06万 - 项目类别:
Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
- 批准号:
10207998 - 财政年份:2015
- 资助金额:
$ 36.06万 - 项目类别:
Deciphering human signaling networks through synthetic activation of proteins in genomically recoded organisms with multiple open codons
通过具有多个开放密码子的基因组记录生物体中蛋白质的合成激活来破译人类信号网络
- 批准号:
10592390 - 财政年份:2015
- 资助金额:
$ 36.06万 - 项目类别:
Revealing substrates and phosphoproteome level function of human STE20 kinases
揭示人类 STE20 激酶的底物和磷酸化蛋白质组水平功能
- 批准号:
10171453 - 财政年份:2015
- 资助金额:
$ 36.06万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 36.06万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 36.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 36.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 36.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 36.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 36.06万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 36.06万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 36.06万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 36.06万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 36.06万 - 项目类别:














{{item.name}}会员




