Multi-color optical voltage imaging of neural activity in behaving animals
行为动物神经活动的多色光学电压成像
基本信息
- 批准号:10166236
- 负责人:
- 金额:$ 87.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAddressAmino Acid SequenceAnimal BehaviorAnimalsAreaBRAIN initiativeBrainBrain imagingCategoriesCellsCephalicChronicColorComplementComputer softwareDataDepositionDevicesDiseaseDorsalEducational workshopElectrodesEngineeringFeedbackFiber OpticsFluorescence Resonance Energy TransferGeneticHeadHealthImageImaging DeviceImaging TechniquesIndividualIntelligenceKnowledgeLabelLaboratoriesLearningLicensingLightMachine LearningMembraneMembrane PotentialsMethodsMicroscopeMolecularMonitorMonoclonal Antibody R24MusNeuronsOpsinOptical InstrumentOpticsOutcomePatternPerformancePopulationPreparationProteinsPublishingResearchResolutionResource SharingRodentScienceScientistShapesSliceSpecificitySpeedSurfaceTechniquesTestingTimeTrainingTransgenic OrganismsUnited States National Institutes of HealthUniversitiesValidationVariantViral VectorVisitWorkabsorptionawakebrain shapecell typedesignflygenetic signaturehigh throughput screeningimaging facilitiesimaging modalityimaging studyimprovedinformation processinginnovationinstrumentmachine learning methodmicroendoscopymillisecondmutantneocorticalneural circuitneurophysiologynew technologynovelnovel strategiesoptogeneticspublic repositoryrelating to nervous systemresponsescreeningsensorsuccesstoolvoltage
项目摘要
Abstract
Groundbreaking work within the NIH BRAIN Initiative has revealed many new types of neurons and their
genetic signatures. The dividends from this research will include sophisticated tools allowing selective genetic
access to these cell-types, such as for imaging, optogenetic or tracing studies. To complement these powerful
genetic tools, it will be equally important to have new imaging techniques that can reveal how multiple neuron-
types work together in the live brain to support information-processing and construct different brain states.
To address this challenge, Stanford University and The John B. Pierce Laboratory at Yale University
will create optical techniques for imaging the concurrent voltage dynamics of up to 4 separate neuron-types in
behaving animals. First, we will combine machine learning methods and an automated, high-throughput protein
screening platform to engineer 4 different categories of genetically encoded fluorescent optical indicators of
neuronal transmembrane voltage. We will then innovate several types of optical instruments tailored to work in
conjunction with the new voltage indicators. These instruments will enable unprecedented studies of voltage
rhythms and spiking dynamics in 2–4 genetically identified neuron-types in superficial and deep brain areas of
awake behaving animals. One instrument will allow us to track the concurrent, population voltage oscillations of
2 neuron-types in freely behaving rodents. Another instrument, an optical mesoscope, will enable imaging
studies of voltage waves and oscillations across the entire neocortical surface of behaving mice. A third device
will be a high-speed miniature microscope for tracking neural dynamics at single cell-, single spike-resolution in
freely behaving mice. Lastly, we will develop the capability to image with millisecond-scale precision the
simultaneous spiking dynamics of 4 targeted neuron-types in either cortical or deep brain areas. Five external
beta-tester labs will evaluate all these innovations in live mice and flies and provide critical user-feedback.
If our work succeeds, it will be a ‘game-changer’ for studies of brain dynamics, yielding vital knowledge
about how different neuron-types synergize their dynamics to shape animal behavior and the brain’s global
states in health and disease. To facilitate this outcome, we plan a 5-fold strategy for resource sharing: (i) All
voltage-indicator constructs, viral vectors, transgenic flies, software and screening data will be deposited at
public repositories for open distribution; (ii) All instrument designs will be published in extensive detail to
facilitate replication; (iii) Our novel imaging devices will be integrated into an existing NIH-supported, publicly
accessible facility for brain-imaging in rodents; (iv) In project years 2–4, we will conduct 4 training workshops
for 40 visiting scientists per year (120 in total) to learn the new technologies firsthand. These visitors will also
provide extensive user-feedback; (v) We will license our imaging instruments for commercial distribution.
Overall, we expect our project will lead to major conceptual advances in brain science and multiple new
technologies that will reshape the practice of mammalian brain imaging.
摘要
美国国立卫生研究院大脑计划的开创性工作揭示了许多新型神经元和它们的
基因签名。这项研究的红利将包括允许选择性遗传的尖端工具
获取这些类型的细胞,例如用于成像、光遗传学或示踪研究。为了补充这些强大的
基因工具,同样重要的是拥有新的成像技术,可以揭示多个神经元是如何-
不同类型的人在活的大脑中一起工作,以支持信息处理并构建不同的大脑状态。
为了应对这一挑战,斯坦福大学和耶鲁大学约翰·B·皮尔斯实验室
将创造光学技术来成像多达4种不同神经元类型的并发电压动态
表现得像动物一样。首先,我们将结合机器学习方法和自动化的高通量蛋白质
用于设计4种不同类别的基因编码荧光光学指示剂的筛选平台
神经元跨膜电压。然后,我们将创新几种类型的光学仪器,以便在
与新的电压指示器配合使用。这些仪器将使对电压的前所未有的研究成为可能
大鼠脑浅层和深层2-4种神经元类型的节律和放电动力学
醒来后表现得像动物一样。一台仪器将允许我们跟踪并发的总体电压振荡
2自由行为啮齿动物的神经元类型。另一种仪器,光学介镜,将使成像成为可能
对表现良好的小鼠整个新皮质表面的电压波动和振荡的研究。第三种设备
将是一种高速微型显微镜,用于在单细胞、单峰电位分辨率下跟踪神经动力学
行为自由的老鼠。最后,我们将开发以毫秒级精度成像的能力
大脑皮层或脑深部4种靶向神经元的同步放电动力学。五个外部
测试者实验室将在活的老鼠和苍蝇身上评估所有这些创新,并提供关键的用户反馈。
如果我们的工作取得成功,它将为大脑动力学研究带来至关重要的知识,从而改变游戏规则
关于不同的神经元类型如何协同它们的动力学来塑造动物的行为和大脑的全局
在健康和疾病方面。为了促进这一成果,我们计划了一项5倍的资源共享战略:(I)所有
电压指示器构建、病毒载体、转基因苍蝇、软件和筛查数据将存放在
公开分发的公共储存库;(2)所有仪器设计将广泛详细地发布到
促进复制;(Iii)我们的新型成像设备将集成到现有的NIH支持的、公开的
可使用的啮齿动物脑成像设施;(Iv)在项目第2-4年,我们将举办4个培训工作坊
每年40名访问科学家(总共120名)第一手学习新技术。这些访客还将
提供广泛的用户反馈;(V)我们将许可我们的成像仪器进行商业分销。
总体而言,我们预计我们的项目将导致脑科学的重大概念进步和多个新的
将重塑哺乳动物大脑成像实践的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK J SCHNITZER其他文献
MARK J SCHNITZER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK J SCHNITZER', 18)}}的其他基金
A robotic multi-armed two-photon microscope for imaging neural interactions across multiple brain areas
机器人多臂双光子显微镜,用于对多个大脑区域的神经相互作用进行成像
- 批准号:
10401607 - 财政年份:2022
- 资助金额:
$ 87.54万 - 项目类别:
A robotic multi-armed two-photon microscope for imaging neural interactions across multiple brain areas
机器人多臂双光子显微镜,用于对多个大脑区域的神经相互作用进行成像
- 批准号:
10675439 - 财政年份:2022
- 资助金额:
$ 87.54万 - 项目类别:
Multi-color optical voltage imaging of neural activity in behaving animals
行为动物神经活动的多色光学电压成像
- 批准号:
10415945 - 财政年份:2021
- 资助金额:
$ 87.54万 - 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
- 批准号:
10410556 - 财政年份:2021
- 资助金额:
$ 87.54万 - 项目类别:
Dissecting neocortical field potential dynamics using optical voltage imaging in genetically targeted cell-types
使用光学电压成像在基因靶向细胞类型中剖析新皮质场电位动态
- 批准号:
10338619 - 财政年份:2021
- 资助金额:
$ 87.54万 - 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
- 批准号:
10302852 - 财政年份:2021
- 资助金额:
$ 87.54万 - 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
- 批准号:
10598151 - 财政年份:2021
- 资助金额:
$ 87.54万 - 项目类别:
Routing of SPW-R content via distinct hippocampal output pathways
通过不同的海马输出途径进行 SPW-R 内容的路由
- 批准号:
10202754 - 财政年份:2017
- 资助金额:
$ 87.54万 - 项目类别:
Large-scale dual-color two-photon calcium imaging in awake behaving animals
清醒行为动物的大规模双色双光子钙成像
- 批准号:
9788541 - 财政年份:2016
- 资助金额:
$ 87.54万 - 项目类别:
Large-scale dual-color two-photon calcium imaging in awake behaving animals
清醒行为动物的大规模双色双光子钙成像
- 批准号:
9346634 - 财政年份:2016
- 资助金额:
$ 87.54万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 87.54万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 87.54万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 87.54万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 87.54万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 87.54万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 87.54万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 87.54万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 87.54万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 87.54万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 87.54万 - 项目类别:
Research Grant














{{item.name}}会员




