Multi-color optical voltage imaging of neural activity in behaving animals

行为动物神经活动的多色光学电压成像

基本信息

  • 批准号:
    10415945
  • 负责人:
  • 金额:
    $ 88.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-15 至 2025-11-30
  • 项目状态:
    未结题

项目摘要

Abstract Groundbreaking work within the NIH BRAIN Initiative has revealed many new types of neurons and their genetic signatures. The dividends from this research will include sophisticated tools allowing selective genetic access to these cell-types, such as for imaging, optogenetic or tracing studies. To complement these powerful genetic tools, it will be equally important to have new imaging techniques that can reveal how multiple neuron- types work together in the live brain to support information-processing and construct different brain states. To address this challenge, Stanford University and The John B. Pierce Laboratory at Yale University will create optical techniques for imaging the concurrent voltage dynamics of up to 4 separate neuron-types in behaving animals. First, we will combine machine learning methods and an automated, high-throughput protein screening platform to engineer 4 different categories of genetically encoded fluorescent optical indicators of neuronal transmembrane voltage. We will then innovate several types of optical instruments tailored to work in conjunction with the new voltage indicators. These instruments will enable unprecedented studies of voltage rhythms and spiking dynamics in 2–4 genetically identified neuron-types in superficial and deep brain areas of awake behaving animals. One instrument will allow us to track the concurrent, population voltage oscillations of 2 neuron-types in freely behaving rodents. Another instrument, an optical mesoscope, will enable imaging studies of voltage waves and oscillations across the entire neocortical surface of behaving mice. A third device will be a high-speed miniature microscope for tracking neural dynamics at single cell-, single spike-resolution in freely behaving mice. Lastly, we will develop the capability to image with millisecond-scale precision the simultaneous spiking dynamics of 4 targeted neuron-types in either cortical or deep brain areas. Five external beta-tester labs will evaluate all these innovations in live mice and flies and provide critical user-feedback. If our work succeeds, it will be a ‘game-changer’ for studies of brain dynamics, yielding vital knowledge about how different neuron-types synergize their dynamics to shape animal behavior and the brain’s global states in health and disease. To facilitate this outcome, we plan a 5-fold strategy for resource sharing: (i) All voltage-indicator constructs, viral vectors, transgenic flies, software and screening data will be deposited at public repositories for open distribution; (ii) All instrument designs will be published in extensive detail to facilitate replication; (iii) Our novel imaging devices will be integrated into an existing NIH-supported, publicly accessible facility for brain-imaging in rodents; (iv) In project years 2–4, we will conduct 4 training workshops for 40 visiting scientists per year (120 in total) to learn the new technologies firsthand. These visitors will also provide extensive user-feedback; (v) We will license our imaging instruments for commercial distribution. Overall, we expect our project will lead to major conceptual advances in brain science and multiple new technologies that will reshape the practice of mammalian brain imaging.
摘要 NIH BRAIN Initiative的开创性工作揭示了许多新型神经元及其功能 基因特征这项研究的成果将包括先进的工具, 获取这些细胞类型,例如用于成像、光遗传学或追踪研究。为了补充这些强大的 基因工具,同样重要的是有新的成像技术,可以揭示多个神经元, 不同类型的大脑在活的大脑中一起工作,以支持信息处理并构建不同的大脑状态。 为了应对这一挑战,斯坦福大学和约翰B。耶鲁大学皮尔斯实验室 将创建光学技术,用于成像多达4个单独的神经元类型的并发电压动态, 行为动物首先,我们将联合收割机结合机器学习方法和自动化的高通量蛋白质 筛选平台,以设计4种不同类别的遗传编码荧光光学指示剂, 神经元跨膜电压然后,我们将创新几种类型的光学仪器, 与新的电压指示器配合使用。这些仪器将使前所未有的研究电压 节律和尖峰动力学在2-4遗传识别的神经元类型在浅表和深部脑区的 清醒的动物一种仪器将使我们能够跟踪并发的,群体电压振荡, 自由行为啮齿动物的2种神经元类型。另一种仪器,光学显微镜,将使成像 对行为正常的老鼠的整个大脑皮层表面的电压波和振荡的研究。第三设备 将是一个高速微型显微镜,用于跟踪神经动力学在单细胞,单尖峰分辨率, 自由活动的老鼠最后,我们将开发以毫秒级精度成像的能力, 在皮层或深部脑区中的4种靶向神经元类型的同时尖峰动力学。五个外部 beta-tester实验室将在活老鼠和苍蝇身上评估所有这些创新,并提供关键的用户反馈。 如果我们的工作成功,它将成为大脑动力学研究的“游戏规则改变者”,产生重要的知识 关于不同类型的神经元如何协同它们的动力学来塑造动物行为和大脑的全球 健康和疾病的状态。为了促进这一成果,我们计划了一项五重资源共享战略: 电压指示器构建体、病毒载体、转基因果蝇、软件和筛选数据将存放在 公开发行的公共知识库;(ii)所有仪器设计将详细公布, 促进复制;(iii)我们的新型成像设备将被整合到现有的NIH支持的,公开的 (iv)在项目第2至4年,我们会举办4个训练工作坊, 每年有40名访问科学家(共120名)直接学习新技术。这些游客还将 提供广泛的用户反馈;(v)我们将授权我们的成像仪器进行商业分销。 总的来说,我们希望我们的项目将导致脑科学的重大概念进步和多个新的 这些技术将重塑哺乳动物大脑成像的实践。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARK J SCHNITZER其他文献

MARK J SCHNITZER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARK J SCHNITZER', 18)}}的其他基金

A robotic multi-armed two-photon microscope for imaging neural interactions across multiple brain areas
机器人多臂双光子显微镜,用于对多个大脑区域的神经相互作用进行成像
  • 批准号:
    10401607
  • 财政年份:
    2022
  • 资助金额:
    $ 88.99万
  • 项目类别:
A robotic multi-armed two-photon microscope for imaging neural interactions across multiple brain areas
机器人多臂双光子显微镜,用于对多个大脑区域的神经相互作用进行成像
  • 批准号:
    10675439
  • 财政年份:
    2022
  • 资助金额:
    $ 88.99万
  • 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
  • 批准号:
    10410556
  • 财政年份:
    2021
  • 资助金额:
    $ 88.99万
  • 项目类别:
Dissecting neocortical field potential dynamics using optical voltage imaging in genetically targeted cell-types
使用光学电压成像在基因靶向细胞类型中剖析新皮质场电位动态
  • 批准号:
    10338619
  • 财政年份:
    2021
  • 资助金额:
    $ 88.99万
  • 项目类别:
Multi-color optical voltage imaging of neural activity in behaving animals
行为动物神经活动的多色光学电压成像
  • 批准号:
    10166236
  • 财政年份:
    2021
  • 资助金额:
    $ 88.99万
  • 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
  • 批准号:
    10302852
  • 财政年份:
    2021
  • 资助金额:
    $ 88.99万
  • 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
  • 批准号:
    10598151
  • 财政年份:
    2021
  • 资助金额:
    $ 88.99万
  • 项目类别:
Routing of SPW-R content via distinct hippocampal output pathways
通过不同的海马输出途径进行 SPW-R 内容的路由
  • 批准号:
    10202754
  • 财政年份:
    2017
  • 资助金额:
    $ 88.99万
  • 项目类别:
Large-scale dual-color two-photon calcium imaging in awake behaving animals
清醒行为动物的大规模双色双光子钙成像
  • 批准号:
    9788541
  • 财政年份:
    2016
  • 资助金额:
    $ 88.99万
  • 项目类别:
Large-scale dual-color two-photon calcium imaging in awake behaving animals
清醒行为动物的大规模双色双光子钙成像
  • 批准号:
    9346634
  • 财政年份:
    2016
  • 资助金额:
    $ 88.99万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 88.99万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 88.99万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 88.99万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 88.99万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 88.99万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 88.99万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 88.99万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 88.99万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 88.99万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 88.99万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了