Dissecting neocortical field potential dynamics using optical voltage imaging in genetically targeted cell-types
使用光学电压成像在基因靶向细胞类型中剖析新皮质场电位动态
基本信息
- 批准号:10338619
- 负责人:
- 金额:$ 198.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-25 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsAreaAstrocytesBRAIN initiativeBehaviorBrainBrain DiseasesCellsClinicalCognitionCollectionColorComplement 2Computer ModelsComputersConsciousCre driverData SetDepositionDiagnosisDissectionDistalElectrocorticogramElectrodesElectroencephalographyEnsureEvent-Related PotentialsExcisionFiber OpticsFoundationsGene ExpressionGoalsGrantHeadHumanImageIndividualInterneuronsJointsLocationMapsMeasurementMembraneMethodsMicroscopyMorphologyMusNeocortexNeuronsNeurosciencesOperative Surgical ProceduresOpticsPhasePhysiologicalPopulationPrefrontal CortexPropertyPyramidal CellsResolutionRoleShapesSignal TransductionSiteSpeedStimulusStudy modelsSurfaceSynapsesTechniquesTestingTimeTissuesTransgenic MiceTransgenic OrganismsTravelUnited States National Institutes of HealthVariantVisual CortexWorkawakebiophysical modelbrain researchbrain tissuecell typedesigner receptors exclusively activated by designer drugselectric fieldelectrical measurementexperimental studyextracellularhippocampal pyramidal neuroninsightinstrumentationneocorticalnovelopen dataoptical fiberpublic repositoryrelating to nervous systemspatiotemporaltoolvoltage
项目摘要
Measurements of cortical field potentials are widely used throughout basic and clinical neuroscience, including in electroencephalography (EEG), electrocorticography (ECoG) and local field potential (LFP) recordings. However, the neural origins of field potentials remain poorly understood, due to a lack of techniques for dissecting how different classes of cells contribute to field potential signals. To overcome this longstanding barrier, our project applies fluorescent voltage-indicators and instrumentation for optical voltage-imaging that our team created earlier in the NIH BRAIN Initiative. These new tools will enable us to systematically identify the contributions of 12 different cell-types to neocortical field potential activity. To perform cell-type specific recordings of neural transmembrane voltage dynamics, we will express red and green genetically encoded voltage indicators in a wide set of different transgenic mouse lines, each of which allows selective gene expression in one of the pyramidal neuron or interneuron classes of the neocortex. Concurrent with optical recordings, we will perform traditional electrical recordings of cortical LFPs. These joint optical and electrical measurements will be the first of their kind and will yield important insights into how each neuron-type influences spontaneous and stimulus-evoked cortical field potential activity. Across our collection of mouse lines, we will conduct 3 novel types of recordings, each of which uses cutting-edge instrumentation for optical voltage-imaging in up to 2 cell-types at once in awake behaving mice: a) Fiber-optic voltage-sensing, for tracking the voltage dynamics of genetically defined neural populations; b) Wide-field voltage-imaging of voltage oscillations and waves across the cortex in specific cell-types; c) High-speed (1 kHz) optical voltage imaging of spiking dynamics in up to 2 neuron-types at a time. Further, to test the causal role of each neuron class in shaping cortical field potentials, we will also perform chemogenetic inhibition studies in each of the mouse lines. In these studies, we will silence each of the individual neuron-types and observe how the effective removal of this cell-type from cortical circuitry impacts both LFP activity and the population voltage dynamics of other neuron classes. Together, these groundbreaking studies will propel understanding of cortical field potentials in basic and applied neuroscience by providing fundamental insights into how different cell-types shape field potential dynamics. To help assure that our experiments optimally advance conceptual understanding in the field, our team includes 2 computational neuroscientists whose expertise lies in modeling the biophysics of cortical field potentials. To promote transparency and open-science, we will deposit all of the extensive datasets and analyses from our experiments into public repositories.
皮质场电位的测量广泛用于基础和临床神经科学,包括脑电图(EEG)、皮质电图(ECoG)和局部场电位(LFP)记录。然而,场电位的神经起源仍然知之甚少,由于缺乏解剖技术如何不同类别的细胞有助于场电位信号。为了克服这一长期存在的障碍,我们的项目将荧光电压指示器和仪器应用于我们的团队在NIH BRAIN Initiative早期创建的光学电压成像。这些新工具将使我们能够系统地识别12种不同细胞类型对新皮层场电位活动的贡献。 为了进行神经跨膜电压动力学的细胞类型特异性记录,我们将在广泛的一组不同的转基因小鼠系中表达红色和绿色遗传编码的电压指示剂,其中每一个都允许在新皮层的锥体神经元或中间神经元类中的一个中选择性基因表达。在光学记录的同时,我们将进行传统的皮层LFPs的电记录。这些联合光学和电学测量将是第一次,并将产生重要的见解,每个神经元类型如何影响自发和刺激诱发的皮层场电位活动。 在我们收集的小鼠品系中,我们将进行3种新型的记录,每种记录都使用尖端仪器在清醒行为小鼠中同时对多达2种细胞类型进行光学电压成像:a)光纤电压传感,用于跟踪遗传定义的神经群体的电压动力学; B)特定细胞类型中跨皮层的电压振荡和波的宽场电压成像; c)一次最多2个神经元类型的尖峰动态的高速(1 kHz)光电压成像。此外,为了测试每个神经元类别在形成皮层场电位中的因果作用,我们还将在每个小鼠品系中进行化学发生抑制研究。在这些研究中,我们将沉默每一个单独的神经元类型,并观察如何从皮层回路中有效地去除这种细胞类型影响LFP活动和其他神经元类别的群体电压动态。 总之,这些突破性的研究将通过提供对不同细胞类型如何塑造场电位动力学的基本见解,推动对基础和应用神经科学中皮层场电位的理解。为了帮助确保我们的实验最佳地推进该领域的概念理解,我们的团队包括2名计算神经科学家,他们的专业知识在于对皮层场电位的生物物理学进行建模。为了促进透明度和开放科学,我们将把实验中所有广泛的数据集和分析存款到公共存储库中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK J SCHNITZER其他文献
MARK J SCHNITZER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK J SCHNITZER', 18)}}的其他基金
A robotic multi-armed two-photon microscope for imaging neural interactions across multiple brain areas
机器人多臂双光子显微镜,用于对多个大脑区域的神经相互作用进行成像
- 批准号:
10675439 - 财政年份:2022
- 资助金额:
$ 198.29万 - 项目类别:
A robotic multi-armed two-photon microscope for imaging neural interactions across multiple brain areas
机器人多臂双光子显微镜,用于对多个大脑区域的神经相互作用进行成像
- 批准号:
10401607 - 财政年份:2022
- 资助金额:
$ 198.29万 - 项目类别:
Multi-color optical voltage imaging of neural activity in behaving animals
行为动物神经活动的多色光学电压成像
- 批准号:
10415945 - 财政年份:2021
- 资助金额:
$ 198.29万 - 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
- 批准号:
10410556 - 财政年份:2021
- 资助金额:
$ 198.29万 - 项目类别:
Multi-color optical voltage imaging of neural activity in behaving animals
行为动物神经活动的多色光学电压成像
- 批准号:
10166236 - 财政年份:2021
- 资助金额:
$ 198.29万 - 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
- 批准号:
10302852 - 财政年份:2021
- 资助金额:
$ 198.29万 - 项目类别:
A comprehensive dissection of cell types, circuits and molecular adaptations during opioid use
对阿片类药物使用过程中的细胞类型、回路和分子适应的全面剖析
- 批准号:
10598151 - 财政年份:2021
- 资助金额:
$ 198.29万 - 项目类别:
Routing of SPW-R content via distinct hippocampal output pathways
通过不同的海马输出途径进行 SPW-R 内容的路由
- 批准号:
10202754 - 财政年份:2017
- 资助金额:
$ 198.29万 - 项目类别:
Large-scale dual-color two-photon calcium imaging in awake behaving animals
清醒行为动物的大规模双色双光子钙成像
- 批准号:
9788541 - 财政年份:2016
- 资助金额:
$ 198.29万 - 项目类别:
Large-scale dual-color two-photon calcium imaging in awake behaving animals
清醒行为动物的大规模双色双光子钙成像
- 批准号:
9346634 - 财政年份:2016
- 资助金额:
$ 198.29万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 198.29万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 198.29万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 198.29万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 198.29万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 198.29万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 198.29万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 198.29万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 198.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 198.29万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 198.29万 - 项目类别:
Standard Grant