Ultrasonic Genetically Encoded Calcium Indicators for Whole-Brain Neuroimaging

用于全脑神经影像的超声波基因编码钙指示剂

基本信息

  • 批准号:
    10166018
  • 负责人:
  • 金额:
    $ 214.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

SUMMARY A major goal of the BRAIN initiative is to develop neural imaging technologies enabling whole-brain imaging of specific molecular signals such as neuronal calcium. Currently, fluorescent genetically encoded calcium indicators (GEGIs) combined with advanced microscopy techniques enable single-neuron Ca2+ imaging in volumes smaller than 1 mm3, typically at depths shallower than 1 mm. Alternatively, GECIs combined with implanted fiber photometry enable point-measurements of the aggregate activity of genetically defined neuronal populations in deep brain regions with dimensions on the order of 200 µm. While both of these optical approaches have proven their great value in enabling neuroscience discoveries, they fall short of providing simultaneous whole-brain access to neural signals. If a technology could be developed for whole-brain Ca2+ imaging it would have a transformative impact on neuroscience research. In this project, we will address this ambitious goal by developing ultrasonic genetically encoded calcium indicators (UGECIs) and showing that we can use them to image brain-wide calcium in mice. Ultrasound has unique advantages as a modality for neural imaging due to its ability to penetrate much deeper than light (several cm) while providing relatively high spatial (tens of µm) and temporal (ms) resolution. This potential has been demonstrated by hemodynamic functional ultrasound (fUS), which uses ultrafast Doppler imaging of blood flow to visualize neural activity with 100 µm and 100 ms resolution. fUS has shown that ultrasound imaging of neural activity is possible in species ranging from mice to humans and is compatible with awake, behaving, freely moving animals. However, hemodynamics provide only an indirect measure of neural activity. In contrast, the measurement of calcium with GECIs provides access to a molecular signal integral to neuronal excitation, and allows the probing of specific cellular populations. This project will combine the whole-brain coverage of ultrasound with the molecular and genetic specificity of GECIs by developing the ultrasound versions of these tools. Our proposal to develop UGECIs arises from a long-standing research program in our lab to develop the first genetically encoded reporters and sensors for ultrasound. These constructs are based on gas vesicles (GVs), a unique class of genetically encoded air-filled protein nanostructures derived from buoyant bacteria, which we discovered are capable of scattering sound waves and thereby producing ultrasound contrast. We recently showed that GVs can be engineered to incorporate molecular binding domains allowing their protein shells to change their mechanical properties and resulting ultrasound contrast in response to molecules such as calcium. Building on these advances, we will develop UGECIs, express them in the mouse brain and use them to image brain-wide calcium signals using new ultrasound techniques allowing rapid 2-dimensional and 3-dimensional molecular imaging. The resulting technology will provide neuroscience researchers with revolutionary capabilities for whole-brain molecular neural imaging.
总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mikhail Shapiro其他文献

Mikhail Shapiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mikhail Shapiro', 18)}}的其他基金

International Symposium on Biomolecular Ultrasound and Sonogenetics
生物分子超声与声遗传学国际研讨会
  • 批准号:
    10609240
  • 财政年份:
    2022
  • 资助金额:
    $ 214.21万
  • 项目类别:
The Future of Molecular MR: A Cellular and Molecular MR Imaging Workshop
分子 MR 的未来:细胞和分子 MR 成像研讨会
  • 批准号:
    10540612
  • 财政年份:
    2022
  • 资助金额:
    $ 214.21万
  • 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
  • 批准号:
    10261864
  • 财政年份:
    2021
  • 资助金额:
    $ 214.21万
  • 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
  • 批准号:
    10488296
  • 财政年份:
    2021
  • 资助金额:
    $ 214.21万
  • 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
  • 批准号:
    10676282
  • 财政年份:
    2021
  • 资助金额:
    $ 214.21万
  • 项目类别:
Acoustically targeted molecular control of cell type specific neural circuits in non-human primates
非人类灵长类动物细胞类型特异性神经回路的声学靶向分子控制
  • 批准号:
    9804641
  • 财政年份:
    2019
  • 资助金额:
    $ 214.21万
  • 项目类别:
Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
  • 批准号:
    10318929
  • 财政年份:
    2019
  • 资助金额:
    $ 214.21万
  • 项目类别:
Molecular Functional Ultrasound for Non-Invasive Imaging and Image-Guided Recording and Modulation of Neural Activity
用于非侵入性成像和图像引导记录以及神经活动调节的分子功能超声
  • 批准号:
    9605856
  • 财政年份:
    2016
  • 资助金额:
    $ 214.21万
  • 项目类别:
Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
  • 批准号:
    8766150
  • 财政年份:
    2014
  • 资助金额:
    $ 214.21万
  • 项目类别:
Dissecting human brain circuits in vivo using ultrasonic neuromodulation
使用超声波神经调制在体内解剖人脑回路
  • 批准号:
    8828517
  • 财政年份:
    2014
  • 资助金额:
    $ 214.21万
  • 项目类别:

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 214.21万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 214.21万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 214.21万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 214.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 214.21万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 214.21万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 214.21万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 214.21万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 214.21万
  • 项目类别:
    Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 214.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了