Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
基本信息
- 批准号:10318929
- 负责人:
- 金额:$ 65.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAcousticsAddressAreaBacteriaBiochemicalBiologicalBiologyBiosensorBlood CirculationCell physiologyCellsChemicalsContrast MediaDetectionDevelopmentDiagnosticDimensionsElementsEngineeringEscherichia coliEventExtravasationFrequenciesGasesGastrointestinal tract structureGene ExpressionGeneticGenetic EngineeringGoalsImageImaging technologyLaboratoriesMagnetic Resonance ImagingMalignant NeoplasmsMammalian CellMedicineMetalloproteasesMethodsMicrobeMicroscopyModalityModelingMolecularMolecular TargetMultimodal ImagingMusNanostructuresNatureOpticsPhysiologic pulsePredispositionPropertyProteinsReporterReporter GenesResearchResolutionRoleSalmonella typhimuriumSensitivity and SpecificitySignal TransductionSurface PropertiesTechniquesTechnologyTherapeutic AgentsTissuesTransplantationUltrasonographyVesicleWorkanalogbasebiological researchbiomedical imagingcellular imagingcellular targetingcommensal bacteriacostdesignenzyme activityextracellularimaging agentimaging modalityin vivoinnovationinsightmicrobiomemolecular diagnosticsmolecular imagingmulticatalytic endopeptidase complexmultidisciplinarymultiplexed imagingnanonanoscalenon-invasive imagingpressureprogramsresearch and developmentresponsesensorsignal processingsuccesssynthetic biologytargeted imagingtemporal measurementtumortumor xenograftultrasounduptake
项目摘要
PROJECT SUMMARY/ABSTRACT
Ultrasound is among the world's most widely used biomedical imaging technologies due to its relative
simplicity, low cost and ability to visualize deep tissues with high spatial and temporal resolution. However,
ultrasound has historically had a small role in molecular and cellular imaging due to the lack of contrast agents
connected to specific aspects of cellular function such as gene expression. To address this limitation, we are
developing the first acoustic biomolecules – proteins that can be imaged with ultrasound. These constructs are
based on gas vesicles – a unique class of gas-filled proteins from buoyant photosynthetic microbes, which we
adapted as imaging agents for ultrasound in 2014. Since this key initial discovery, our laboratory has led the
development of the emerging field of biomolecular ultrasound by engineering the physical, chemical and
biological properties of gas vesicles to enable multiplexed imaging, cellular targeting and selective detection in
vivo. In parallel, we have worked on transplanting the genetic program encoding gas vesicles into heterologous
hosts, recently succeeding in doing so in commensal bacteria relevant to the mammalian microbiome, while in
parallel making initial progress on expressing gas vesicles in mammalian cells. In addition, we discovered that
gas vesicles can produce susceptibility-weighted MRI contrast erasable by ultrasound, providing an additional
readout modality with unique advantages. Here we propose to build on these insights to advance gas vesicles
as targeted nanoscale contrast agents, mammalian reporter genes and functional sensors for ultrasound. This
work will focus on engineering gas vesicle properties for long-term circulation and extravascular targeting
through the bloodstream, achieving robust expression of gas vesicles as reporter genes in mammalian cells,
developing nonlinear ultrasound pulse sequences to maximize the sensitivity of gas vesicle imaging, and
designing the first acoustic sensors of enzyme activity. The fundamental innovation contained in this research
is that gas vesicle are the first biomolecular, genetically engineered and encoded contrast agent of any kind for
ultrasound. As a result, they have the potential to transform this imaging modality analogously to the way
fluorescent proteins transformed optical microscopy.
项目总结/摘要
超声波是世界上最广泛使用的生物医学成像技术之一,由于其相对于
简单性、低成本和以高空间和时间分辨率可视化深部组织的能力。然而,在这方面,
由于缺乏造影剂
与细胞功能的特定方面如基因表达有关。为了解决这个问题,我们
开发第一种声学生物分子--可以用超声成像的蛋白质。这些构建体
基于气体囊泡-一种来自浮力光合微生物的独特的充气蛋白质,我们
在2014年被用作超声成像剂。自从这一关键的初步发现以来,我们的实验室已经领导了
通过工程化的物理,化学和生物分子超声的新兴领域的发展,
气体囊泡的生物学性质,以使得能够进行多重成像、细胞靶向和选择性检测,
vivo.与此同时,我们已经致力于将编码气体囊泡的遗传程序移植到异源细胞中,
宿主,最近成功地在与哺乳动物微生物组相关的肠道细菌中这样做,而在
同时,在哺乳动物细胞中表达气体囊泡方面也取得了初步进展。另外,我们发现,
气泡可以产生可被超声消除的磁共振成像对比度,提供额外的
具有独特优势的读出模式。在这里,我们建议建立在这些见解,以推进气体囊泡
作为靶向纳米级造影剂、哺乳动物报告基因和超声功能传感器。这
工作将集中在长期循环和血管外靶向的工程气泡特性上
通过血流,在哺乳动物细胞中实现作为报告基因的气泡的稳健表达,
开发非线性超声脉冲序列以最大化气泡成像的灵敏度,以及
设计了第一个酶活性声学传感器。这项研究的基本创新之处在于
气体囊泡是第一种生物分子、基因工程和编码造影剂,
超声.因此,他们有潜力将这种成像方式类似于
荧光蛋白改变了光学显微镜。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(8)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Shapiro其他文献
Mikhail Shapiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Shapiro', 18)}}的其他基金
International Symposium on Biomolecular Ultrasound and Sonogenetics
生物分子超声与声遗传学国际研讨会
- 批准号:
10609240 - 财政年份:2022
- 资助金额:
$ 65.38万 - 项目类别:
The Future of Molecular MR: A Cellular and Molecular MR Imaging Workshop
分子 MR 的未来:细胞和分子 MR 成像研讨会
- 批准号:
10540612 - 财政年份:2022
- 资助金额:
$ 65.38万 - 项目类别:
Ultrasonic Genetically Encoded Calcium Indicators for Whole-Brain Neuroimaging
用于全脑神经影像的超声波基因编码钙指示剂
- 批准号:
10166018 - 财政年份:2021
- 资助金额:
$ 65.38万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10261864 - 财政年份:2021
- 资助金额:
$ 65.38万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10488296 - 财政年份:2021
- 资助金额:
$ 65.38万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10676282 - 财政年份:2021
- 资助金额:
$ 65.38万 - 项目类别:
Acoustically targeted molecular control of cell type specific neural circuits in non-human primates
非人类灵长类动物细胞类型特异性神经回路的声学靶向分子控制
- 批准号:
9804641 - 财政年份:2019
- 资助金额:
$ 65.38万 - 项目类别:
Molecular Functional Ultrasound for Non-Invasive Imaging and Image-Guided Recording and Modulation of Neural Activity
用于非侵入性成像和图像引导记录以及神经活动调节的分子功能超声
- 批准号:
9605856 - 财政年份:2016
- 资助金额:
$ 65.38万 - 项目类别:
Dissecting human brain circuits in vivo using ultrasonic neuromodulation
使用超声波神经调制在体内解剖人脑回路
- 批准号:
8828517 - 财政年份:2014
- 资助金额:
$ 65.38万 - 项目类别:
Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
- 批准号:
8766150 - 财政年份:2014
- 资助金额:
$ 65.38万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 65.38万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 65.38万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 65.38万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 65.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 65.38万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 65.38万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 65.38万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 65.38万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 65.38万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 65.38万 - 项目类别:
Standard Grant