Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
基本信息
- 批准号:10488296
- 负责人:
- 金额:$ 117.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAnatomyAnimalsBiologicalBiological PhenomenaBiologyBiosensorBrain regionCell TherapyCell physiologyCellsCommunicationDepositionDevelopmentEngineeringFluorescence MicroscopyFocused UltrasoundGastrointestinal tract structureGene ExpressionGoalsHuman bodyImageImmuneImmunotherapyInvestigationLightLocationMechanicsMedical ImagingMedical TechnologyMethodsModalityNeuronsNeurosciencesOperative Surgical ProceduresOpticsPathway interactionsPenetrationPhysicsProcessPropertyProteinsReporter GenesResearchResearch PersonnelSignal TransductionStructureTechniquesTechnologyTimeTissuesTravelTumor-infiltrating immune cellsVisible RadiationWorkbiological systemscellular imagingin vivomechanical forcemicrobial colonizationmolecular imagingneuroregulationoptogeneticsreceptorremote controlsoundtooltumorultrasound
项目摘要
SUMMARY
The discovery and development of fluorescent proteins and optogenetics revolutionized biology by making it
possible to image and control specific cellular processes with visible light. While these tools have enabled
countless biological discoveries, the poor penetration of light into living tissue makes it difficult to use optical
techniques in intact animals. As a result, biological phenomena ranging from the signaling of neurons in deep-
brain regions, to the infiltration of immune cells into tumors, to the microbial colonization of the GI tract, are
challenging to study within their natural in vivo context. If instead of light it were possible to visualize and
manipulate cellular function using a more penetrant form of energy such as ultrasound, this would open
previously inaccessible domains of in vivo biology to direct investigation. In addition, it would enhance the
development of cell-based therapies by allowing cellular agents to be seen and controlled after administration
into the human body. The physics of ultrasound make it an ideal modality for deep-tissue cellular communication.
Sound waves in the MHz range are weakly scattered by tissue and can therefore penetrate several cm into the
body. With wavelengths on the order of 100 µm and travel times < 1 ms, ultrasound can access many key
structures and processes. When focused, sound waves can deliver mechanical and thermal energy to precise
anatomical locations. These properties have already made ultrasound one of the world’s most widely used
technologies for medical imaging and non-invasive surgery. However, the potential of ultrasound to serve as a
tool for cellular imaging and control has been relatively untapped due to a lack of methods to connect it to the
function of specific cells and biomolecules. In previous work, the Shapiro lab has pioneered the use of ultrasound
in cellular and molecular imaging by developing the first acoustic reporter genes and biosensors for ultrasound,
aiming to “do for ultrasound what fluorescent proteins have done for fluorescence microscopy”. The major goal
of our proposed new research direction is to “do for ultrasound what optogenetics has done for light” by giving
sound waves the ability to control specific cellular functions such as neuronal excitation, gene expression and
intracellular signaling in vivo. The basic principle of our approach is to (1) use focused ultrasound to deposit
acoustic energy at a specific location in tissue, (2) use genetically encoded “acoustic antennae” to convert this
energy into local mechanical force, and (3) use this force to actuate mechanosensitive receptors to produce
specific cellular signals. We will implement this approach in neurons and immune cells to enable unique
neuroscience and cell therapy applications. If successful, this work will help establish the new field of
sonogenetics by providing researchers and clinicians with the unprecedented ability to “point and click” on cells
deep within the body and tell them what to do.
总结
荧光蛋白和光遗传学的发现和发展使生物学发生了革命性的变化,
可以用可见光成像和控制特定的细胞过程。虽然这些工具使
无数的生物学发现,光对活组织的渗透性差,使得很难使用光学
技术在完整的动物。因此,生物现象,从深层神经元的信号,
大脑区域,免疫细胞浸润到肿瘤中,到胃肠道的微生物定植,
在其自然的体内环境中进行研究具有挑战性。如果不是光,而是视觉,
操纵细胞功能使用更渗透形式的能量,如超声波,这将打开
以前无法进入的领域在体内生物学直接调查。此外,它还将增强
通过在给药后观察和控制细胞因子来开发基于细胞的疗法
植入人体超声的物理特性使其成为深层组织细胞通信的理想模式。
MHz范围内的声波被组织微弱地散射,因此可以穿透几厘米进入组织。
身体超声波的波长约为100 µm,传播时间< 1 ms,
结构和工艺。当聚焦时,声波可以将机械能和热能精确地传递到
解剖位置。这些特性已经使超声波成为世界上应用最广泛的技术之一
医学成像和非侵入性手术技术。然而,超声波作为一种
细胞成像和控制的工具一直相对未开发,由于缺乏方法将其连接到
特定细胞和生物分子的功能。在以前的工作中,夏皮罗实验室率先使用超声波
在细胞和分子成像中,通过开发第一个声学报告基因和用于超声的生物传感器,
其目标是“为超声波做荧光蛋白为荧光显微镜做的事情”。的主要目标
我们提出的一个新的研究方向是“为超声做光遗传学为光做的事情”,
声波控制特定细胞功能的能力,如神经元兴奋,基因表达和
体内细胞内信号传导。我们方法的基本原理是(1)使用聚焦超声进行存款
组织中特定位置的声能,(2)使用基因编码的“声天线”将其转换为
能量转化为局部机械力,以及(3)使用该力来驱动机械敏感受体以产生
特定的细胞信号。我们将在神经元和免疫细胞中实施这种方法,
神经科学和细胞治疗应用。如果成功,这项工作将有助于建立新的领域,
通过为研究人员和临床医生提供前所未有的“指向和点击”细胞的能力,
告诉他们该怎么做
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Shapiro其他文献
Mikhail Shapiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Shapiro', 18)}}的其他基金
International Symposium on Biomolecular Ultrasound and Sonogenetics
生物分子超声与声遗传学国际研讨会
- 批准号:
10609240 - 财政年份:2022
- 资助金额:
$ 117.25万 - 项目类别:
The Future of Molecular MR: A Cellular and Molecular MR Imaging Workshop
分子 MR 的未来:细胞和分子 MR 成像研讨会
- 批准号:
10540612 - 财政年份:2022
- 资助金额:
$ 117.25万 - 项目类别:
Ultrasonic Genetically Encoded Calcium Indicators for Whole-Brain Neuroimaging
用于全脑神经影像的超声波基因编码钙指示剂
- 批准号:
10166018 - 财政年份:2021
- 资助金额:
$ 117.25万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10261864 - 财政年份:2021
- 资助金额:
$ 117.25万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10676282 - 财政年份:2021
- 资助金额:
$ 117.25万 - 项目类别:
Acoustically targeted molecular control of cell type specific neural circuits in non-human primates
非人类灵长类动物细胞类型特异性神经回路的声学靶向分子控制
- 批准号:
9804641 - 财政年份:2019
- 资助金额:
$ 117.25万 - 项目类别:
Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
- 批准号:
10318929 - 财政年份:2019
- 资助金额:
$ 117.25万 - 项目类别:
Molecular Functional Ultrasound for Non-Invasive Imaging and Image-Guided Recording and Modulation of Neural Activity
用于非侵入性成像和图像引导记录以及神经活动调节的分子功能超声
- 批准号:
9605856 - 财政年份:2016
- 资助金额:
$ 117.25万 - 项目类别:
Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
- 批准号:
8766150 - 财政年份:2014
- 资助金额:
$ 117.25万 - 项目类别:
Dissecting human brain circuits in vivo using ultrasonic neuromodulation
使用超声波神经调制在体内解剖人脑回路
- 批准号:
8828517 - 财政年份:2014
- 资助金额:
$ 117.25万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 117.25万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 117.25万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 117.25万 - 项目类别:
Research Grant