Molecular Functional Ultrasound for Non-Invasive Imaging and Image-Guided Recording and Modulation of Neural Activity
用于非侵入性成像和图像引导记录以及神经活动调节的分子功能超声
基本信息
- 批准号:9605856
- 负责人:
- 金额:$ 10.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAnimal ModelAnimalsAreaBRAIN initiativeBehaviorBehavioral ParadigmBlood VesselsBlood flowBrainBrain imagingBrain regionCalciumCalcium SignalingComplexContrast MediaElectrophysiology (science)EngineeringEnhancersEpilepsyFaceFrequenciesFunctional ImagingFunctional Magnetic Resonance ImagingFutureGene ExpressionGenetic EngineeringGoalsImageImage Enhancement AgentImaging technologyMolecularMusNanostructuresNervous System PhysiologyNeuronsNeurosciencesNeurosciences ResearchOpticsOrganismParietal LobePatternPerformancePharmacologyProtein EngineeringReporterResearch PersonnelResolutionRestRodentSignal TransductionSmell PerceptionTechniquesTechnologyTransducersUltrasonicsUltrasonographyVibrissaeWorkbasebehavioral studycellular engineeringclinical translationcraniumhemodynamicsimage guidedimaging agentimprovedinnovationminimally invasivemultidisciplinarynanoscalenervous system disorderneuroregulationneurovascular couplingnew technologynon-invasive imagingnonhuman primatepediatric patientsrelating to nervous systemspatiotemporaltemporal measurementtranslation to humansvisual motor
项目摘要
Studying complex neurological function and disease requires imaging technologies that can provide a
comprehensive view of the mammalian brain with high spatiotemporal resolution. Ideally, these technologies
should be scalable from small brain regions in rodents to whole-brain imaging in larger organisms such as non-
human primates. They should provide access to endogenous signals such as hemodynamics, and be able to
image neuron-specific signals such as calcium and activity-dependent gene expression using targeted
reporters. They should also be compatible with freely moving subjects to enable behavioral studies, and should
allow simultaneous electrophysiology and targeted modulation. Finally, they should be non-invasive or
minimally invasive to enable the possibility of future clinical translation. No existing technology fulfills these
criteria because optical and electrophysiological techniques face inherent limitations in scaling, while functional
magnetic resonance imaging has relatively low spatiotemporal resolution and severely constrains behavioral
paradigms. Recently, functional ultrasound was introduced as a revolutionary technique that can image neural
activity non-invasively with more than an order of magnitude improved spatiotemporal resolution compared to
fMRI (<100µm and <10ms), using transducers that can be mounted on freely moving animals. In rodents, fUS
has been used to image activity patterns associated with epileptic seizures, whisker stimulation, olfactory
perception and resting state connectivity, and studies are underway to demonstrate the use of fUS in larger
animals and pediatric patients. In its present form, fUS tracks changes in blood flow arising from neurovascular
coupling. While this already provides unprecedented brain imaging performance, it is limited by the relatively
low strength of intrinsic hemodynamic signals and the lack of reporters to connect ultrasound more directly to
neural activity. Here, we propose to take the next major leap in ultrasonic functional imaging of the brain by
developing biomolecular imaging agents that enhance fUS signals by more than two orders of magnitude and
enable direct imaging of activity-dependent gene expression and calcium signaling in genetically targeted
neurons. As part of this work, we will also demonstrate the ability of fUS to image brain activity in non-human
primates in combination with electrical recording and pharmacological modulation. If we are successful in these
goals, the resulting technology will provide neuroscience researchers with truly revolutionary capabilities,
especially for the study of larger animal models. Furthermore, the potential merger of of this technology with
ultrasonic neuromodulation (which uses a different regime of frequencies and intensities) will open the
possibility of all-acoustic interfaces to simultaneously image and control neural activity in freely moving
subjects.
研究复杂的神经功能和疾病需要成像技术,
具有高时空分辨率的哺乳动物大脑的全面视图。理想情况下,这些技术
应该可以从啮齿动物的小脑区域扩展到更大生物体的全脑成像,如非
人类灵长类动物它们应提供内源性信号(如血流动力学)的通路,并能够
使用靶向成像技术对神经元特异性信号如钙和活性依赖性基因表达进行成像
记者说它们还应该与自由移动的受试者兼容,以便进行行为研究,并且应该
允许同时进行电生理学和靶向调节。最后,它们应该是非侵入性的,
微创,使未来的临床翻译的可能性。现有技术无法满足这些要求
标准,因为光学和电生理技术在缩放方面面临固有的限制,而功能
磁共振成像具有相对低的时空分辨率
范例最近,功能性超声作为一种革命性的技术被引入,
与传统活动相比,非侵入性活动的时空分辨率提高了一个数量级以上
fMRI(<100µm和<10 ms),使用可以安装在自由移动动物身上的传感器。在啮齿类动物中,fUS
已经被用于成像与癫痫发作、胡须刺激、嗅觉、
感知和静息状态连接,研究正在进行中,以证明fUS在更大的
动物和儿科患者。在其目前的形式中,fUS跟踪由神经血管引起的血流变化,
偶合器.虽然这已经提供了前所未有的大脑成像性能,但它受到相对
内在血流动力学信号强度低,缺乏报告者将超声更直接地连接到
神经活动在这里,我们建议采取下一个重大飞跃,超声功能成像的大脑,
开发将fUS信号增强两个数量级以上的生物分子成像剂,
能够直接成像活性依赖性基因表达和钙信号传导的基因靶向
神经元作为这项工作的一部分,我们还将证明fUS在非人类大脑活动中成像的能力。
与电记录和药理学调制相结合的灵长类动物。如果我们在这些方面取得成功,
目标,由此产生的技术将为神经科学研究人员提供真正革命性的能力,
特别是对于大型动物模型的研究。此外,这项技术与
超声波神经调节(使用不同的频率和强度)将打开
全声学接口同时成像和控制自由移动中的神经活动的可能性
科目
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Shapiro其他文献
Mikhail Shapiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Shapiro', 18)}}的其他基金
International Symposium on Biomolecular Ultrasound and Sonogenetics
生物分子超声与声遗传学国际研讨会
- 批准号:
10609240 - 财政年份:2022
- 资助金额:
$ 10.24万 - 项目类别:
The Future of Molecular MR: A Cellular and Molecular MR Imaging Workshop
分子 MR 的未来:细胞和分子 MR 成像研讨会
- 批准号:
10540612 - 财政年份:2022
- 资助金额:
$ 10.24万 - 项目类别:
Ultrasonic Genetically Encoded Calcium Indicators for Whole-Brain Neuroimaging
用于全脑神经影像的超声波基因编码钙指示剂
- 批准号:
10166018 - 财政年份:2021
- 资助金额:
$ 10.24万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10261864 - 财政年份:2021
- 资助金额:
$ 10.24万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10488296 - 财政年份:2021
- 资助金额:
$ 10.24万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10676282 - 财政年份:2021
- 资助金额:
$ 10.24万 - 项目类别:
Acoustically targeted molecular control of cell type specific neural circuits in non-human primates
非人类灵长类动物细胞类型特异性神经回路的声学靶向分子控制
- 批准号:
9804641 - 财政年份:2019
- 资助金额:
$ 10.24万 - 项目类别:
Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
- 批准号:
10318929 - 财政年份:2019
- 资助金额:
$ 10.24万 - 项目类别:
Dissecting human brain circuits in vivo using ultrasonic neuromodulation
使用超声波神经调制在体内解剖人脑回路
- 批准号:
8828517 - 财政年份:2014
- 资助金额:
$ 10.24万 - 项目类别:
Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
- 批准号:
8766150 - 财政年份:2014
- 资助金额:
$ 10.24万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 10.24万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 10.24万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 10.24万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 10.24万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 10.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 10.24万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 10.24万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 10.24万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 10.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 10.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists