Dissecting human brain circuits in vivo using ultrasonic neuromodulation
使用超声波神经调制在体内解剖人脑回路
基本信息
- 批准号:8828517
- 负责人:
- 金额:$ 47.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-26 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAddressAffectAnimal ModelAnimalsAreaBehaviorBehavioralBiological ModelsBiophysical ProcessBrainBrain DiseasesBrain imagingCaliberCell Culture TechniquesCellsCellular StructuresClinicalClinical ResearchCollaborationsComplexDecision MakingDeep Brain StimulationDependenceDevelopmentDiagnosisDissectionDreamsElectric StimulationElectroencephalographyElectromagneticsEngineeringEpilepsyFocused Ultrasound TherapyFoundationsFrequenciesFunctional Magnetic Resonance ImagingHumanImageIn VitroIntractable EpilepsyLearningLesionLinkLipid BilayersMacacaMapsMeasurementMeasuresMechanicsMental DepressionMethodsModalityModelingMolecular StructureNatureNervous system structureNeuronsNeurosciencesOocytesOperative Surgical ProceduresParkinson DiseasePatientsPatternPerformancePhysicsPhysiologic pulsePrefrontal CortexPreparationPrimatesProcessRecording of previous eventsResearchResolutionRestRiskRodentSafetySignal TransductionSourceSpatial DistributionStagingStructureSymptomsTask PerformancesTechniquesTechnologyTestingTranscranial magnetic stimulationUltrasonic TherapyUltrasonicsUltrasonographyWorkbasebioimagingcandidate identificationfrontal eye fieldshemodynamicshuman subjectimaging modalityin vivoinnovationinsightmultidisciplinaryneuroregulationnew technologynon-invasive imagingpublic health relevancerelating to nervous systemresearch studyresponsesensory discriminationspatiotemporaltool
项目摘要
DESCRIPTION (provided by applicant): A dream of neuroscience is to be able to non-invasively modulate any given region of the human brain with high spatial resolution. This would open new horizons for understanding human brain function and connectivity, and create completely new options for the non-invasive treatment of brain diseases such as intractable epilepsy, depression, and Parkinson's disease. Current non-invasive brain stimulation methods such as transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (TES) can be applied only to superficial cortical areas, with crude 1 cm-scale resolution, limits placed upon these techniques by fundamental physics. Ultrasonic neuromodulation, the use of ultrasound as an energy modality to affect the activity of the brain, could overcome these limitations and thereby transform both basic and clinical human neuroscience. In fact, the engineering challenge of non-invasively focusing ultrasound to mm-sized regions, either shallow or deep in the brain, has been solved: clinical studies have already demonstrated the feasibility of making focal (~ 3 mm diameter) brain lesions in subcortical regions through transcranial high intensity ultrasound. Furthermore, recent human studies have documented enhanced sensory discrimination following relatively mild ultrasound stimulation. These two findings suggest that ultrasonic neuromodulation has the potential to serve as a game-changing new tool for functional dissection of the human brain, and development of non-invasive therapies for human brain disorders. However, we believe three major questions need to be addressed before ultrasound can be used as an effective and safe tool for modulating human brain activity: (1) What are the basic biophysical mechanisms through which ultrasound acts to affect neural activity? (2) What are the optimal ultrasound parameters for maximally modulating neural activity in the primate brain? (3) How does ultrasound targeted to specific brain areas affect the spatiotemporal pattern of activity across the entire brain to causally modify behavior? We will address these three fundamental questions through a systematic effort spanning in vitro preparations, rodents, macaques, and human subjects. First, we will elucidate the endogenous mechanisms by which ultrasound produces changes in neural activity through biophysical experiments in oocytes, purified lipid bilayers, and cell cultures (Shapiro). Second, we will identify the optimal parameters for eliciting ultrasonic neuromodulation in the macaque, the closest animal model of the human brain, through EEG, fMRI, and single-unit recordings (Tsao). Finally, following initial macaque studies, we will test the effects of ultrasound stimulation on te human brain, both spatially through fMRI (O'Doherty) and temporally through EEG (Makeig), examining effects both during rest and during performance of decision-making tasks. The innovations this project will provide are exactly those called for by RFA-MH-14-217: "development of breakthrough technology to measure brain processes that were formerly inaccessible to imaging, including...local and micro-circuits in the nervous system and mechanisms linking single cell or circuit activity to hemodynamic or macro-electromagnetic signals." Ultimately it's the combination of local circuit perturbation with non-invasive imaging that will give us the greatest insights into brain function. The pairing of focal ultrasound with fMRI/EEG has potential to reveal human brain circuits with unprecedented spatial resolution and create a new bridge for linking circuit activity to non -invasively measured brain signals. Our approach is only possible through intense collaboration among a unique multidisciplinary team working across model systems, and prepares the necessary experimental foundations to test whether ultrasound is the answer to the long -held dream for a technique to focally stimulate any part of the human brain at will.
描述(由申请人提供):神经科学的梦想是能够以高空间分辨率非侵入性地调节人脑的任何给定区域。这将为理解人类大脑功能和连通性开辟新的视野,并为难治性癫痫、抑郁症和帕金森病等脑部疾病的非侵入性治疗创造全新的选择。目前的非侵入性脑刺激方法,如经颅磁刺激(TMS)和经颅电刺激(TES),只能应用于表层皮层区域,具有粗糙的1厘米级分辨率,基础物理学对这些技术的限制。超声波神经调节,使用超声波作为能量模态来影响大脑的活动,可以克服这些限制,从而改变基础和临床人类神经科学。事实上,无创聚焦超声到毫米大小区域的工程挑战,无论是浅的还是深的大脑,已经得到解决:临床研究已经证明了通过经颅高强度超声在皮质下区域制造局灶性(直径约3 mm)脑损伤的可行性。此外,最近的人类研究已经记录了相对温和的超声刺激后增强的感觉辨别力。这两项研究结果表明,超声神经调节有可能成为改变游戏规则的新工具,用于人类大脑的功能解剖,以及开发人类大脑疾病的非侵入性疗法。然而,我们认为,在超声波作为一种有效和安全的工具用于调节人脑活动之前,需要解决三个主要问题:(1)超声波影响神经活动的基本生物物理机制是什么?(2)最大限度地调节灵长类动物大脑神经活动的最佳超声参数是什么?(3)针对特定大脑区域的超声波如何影响整个大脑活动的时空模式,从而因果地改变行为? 我们将解决这三个基本问题,通过系统的努力跨越体外制剂,啮齿动物,猕猴和人类的主题。首先,我们将阐明的内源性机制,超声产生的变化,通过生物物理实验在卵母细胞,纯化的脂质双层,细胞培养(Shapiro)的神经活动。其次,我们将通过EEG、fMRI和单单位记录(Tsao)确定在猕猴(最接近人脑的动物模型)中引发超声神经调制的最佳参数。最后,在最初的猕猴研究之后,我们将测试超声波刺激对人类大脑的影响,无论是空间上通过功能磁共振成像(O 'Doherty)还是时间上通过脑电图(Makeig),检查休息期间和决策任务执行期间的影响。该项目将提供的创新正是RFA-MH-14-217所要求的:“开发突破性技术来测量以前无法成像的大脑过程,包括......神经系统中的局部和微回路以及将单细胞或回路活动与血液动力学或宏观电磁信号联系起来的机制。“最终,局部电路扰动与非侵入性成像的结合将使我们对大脑功能有最深入的了解。聚焦超声与功能磁共振成像/脑电图的配对有可能以前所未有的空间分辨率揭示人类大脑回路,并为将回路活动与非侵入性测量的大脑信号联系起来建立一座新的桥梁。我们的方法只有通过一个独特的跨模型系统的多学科团队之间的密切合作才有可能,并准备必要的实验基础来测试超声是否是长期以来梦想的答案,即一种技术可以随意局部刺激人脑的任何部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Shapiro其他文献
Mikhail Shapiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Shapiro', 18)}}的其他基金
International Symposium on Biomolecular Ultrasound and Sonogenetics
生物分子超声与声遗传学国际研讨会
- 批准号:
10609240 - 财政年份:2022
- 资助金额:
$ 47.19万 - 项目类别:
The Future of Molecular MR: A Cellular and Molecular MR Imaging Workshop
分子 MR 的未来:细胞和分子 MR 成像研讨会
- 批准号:
10540612 - 财政年份:2022
- 资助金额:
$ 47.19万 - 项目类别:
Ultrasonic Genetically Encoded Calcium Indicators for Whole-Brain Neuroimaging
用于全脑神经影像的超声波基因编码钙指示剂
- 批准号:
10166018 - 财政年份:2021
- 资助金额:
$ 47.19万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10261864 - 财政年份:2021
- 资助金额:
$ 47.19万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10488296 - 财政年份:2021
- 资助金额:
$ 47.19万 - 项目类别:
Sonogenetic Remote Control of Cellular Function
细胞功能的声遗传学远程控制
- 批准号:
10676282 - 财政年份:2021
- 资助金额:
$ 47.19万 - 项目类别:
Acoustically targeted molecular control of cell type specific neural circuits in non-human primates
非人类灵长类动物细胞类型特异性神经回路的声学靶向分子控制
- 批准号:
9804641 - 财政年份:2019
- 资助金额:
$ 47.19万 - 项目类别:
Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
- 批准号:
10318929 - 财政年份:2019
- 资助金额:
$ 47.19万 - 项目类别:
Molecular Functional Ultrasound for Non-Invasive Imaging and Image-Guided Recording and Modulation of Neural Activity
用于非侵入性成像和图像引导记录以及神经活动调节的分子功能超声
- 批准号:
9605856 - 财政年份:2016
- 资助金额:
$ 47.19万 - 项目类别:
Biogenic Gas Nanostructures As Molecular Imaging Reporters For Ultrasound
生物气体纳米结构作为超声分子成像记者
- 批准号:
8766150 - 财政年份:2014
- 资助金额:
$ 47.19万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 47.19万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 47.19万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 47.19万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 47.19万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 47.19万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 47.19万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 47.19万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 47.19万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 47.19万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 47.19万 - 项目类别:
Research Grant














{{item.name}}会员




