Computational Efficient Statistical Tools for Analyzing Substance Dependence Sequencing Data
用于分析物质依赖性测序数据的高效计算统计工具
基本信息
- 批准号:10166816
- 负责人:
- 金额:$ 41.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdvanced DevelopmentAttentionBehavioral GeneticsBioinformaticsCatalogsClinicalCollaborationsComplexComputer softwareComputing MethodologiesDataData AnalysesData SetDevelopmental ProcessDiagnosticDisease modelEnvironmentEpidemiologyEtiologyFamilyFutureGenesGeneticGoalsHuman GenomeJointsKnowledgeLarge-Scale SequencingLeadMeasurementMethodologyMethodsNational Institute of Drug AbusePerformancePhenotypePopulationPopulation AnalysisPreventionProcessPsychiatryResearchResearch DesignResearch PersonnelRoleScientistSoftware DesignStatistical MethodsSubstance AddictionTechnologyTestingTwin Multiple BirthVariantanalytical methodbasedesigngene environment interactiongenetic varianthigh dimensionalityimprovedinsightmultidimensional dataneglectnext generation sequencingnovelpolysubstance usepopulation basedpopulation stratificationrare variantsimulationsoftware developmentsuccesstool
项目摘要
Project Summary
With advancements in next-generation sequencing technologies, sequencing studies has become increasingly
used in substance dependence (SD) research. These studies generate a massive amount of sequencing data
and allow researchers to comprehensively investigate the role of a deep catalog of genetic variants in SD.
Although the ongoing sequencing studies hold great promise for unraveling novel variants that contribute to
SD, the high-dimensional data, low frequent variants, complex SD etiology, and heterogeneous SD
phenotypes create tremendous analytic and computational challenges. Developing robust and powerful
methods and computationally efficient software will address the challenges in SD sequencing data analysis
and enhance our ability to identify new SD-related variants. The goals of this application are to develop new
methods and software for designing and analyzing population-based and family-based sequencing data with
single or multiple phenotypes, and to use them in collaborative research to investigate genetic variants and
gene-gene/gene-environment (G-G/G-E) interactions associated with SD. Based on the preliminary simulation
results, our central hypothesis is that the proposed methods are more computationally efficient than existing
methods, and attain a more robust and powerful performance for various types of phenotypes. The planned
specific aims are to: 1) develop a new non-parametric method for the design and analysis of sequencing data
with one or multiple SD phenotypes; 2) develop a Joint-U method for high-dimensional G-G/G-E interaction
analysis with SD sequencing data; 3) develop a family-similarity-U method for family-based SD sequencing
data analysis, accounting for population stratification and rare variants enriched in families; and 4) facilitate the
use of the new methods through software development and collaboration. The proposed research will be
initiated by an early-stage new investigator (NIDA K01 awardee), who has assembled a team of scientists with
expertise in statistical genetics, bioinformatics/software development, SD epidemiology, behavioral genetics,
and clinical psychiatry. The successful completion of this project will address several important statistical and
computational gaps in ongoing sequencing studies, and advance the methodology and software development
for SD sequencing data analysis. The application of the new methods and software to large-scale SD
sequencing datasets also holds promise for the discovery of new SD-associated variants and G-G/G-E
interactions, which will ultimately lead to a better understanding of SD etiology, with resulting potential benefits
for SD prevention and treatment.
项目摘要
随着下一代测序技术的进步,测序研究变得越来越多
用于物质依赖(SD)研究。这些研究产生了大量的测序数据
并允许研究人员全面调查深层次的遗传变异在SD中的作用。
尽管正在进行的测序研究为解开有助于
SD数据维度高,变异频率低,SD病因复杂,SD异质性强
表型带来了巨大的分析和计算挑战。发展强健有力
方法和计算效率高的软件将解决SD测序数据分析中的挑战
并增强我们识别与SD相关的新变种的能力。这个应用程序的目标是开发新的
用于设计和分析基于人群和基于家庭的测序数据的方法和软件
单一或多个表型,并在合作研究中使用它们来研究遗传变异和
与SD相关的基因-基因/基因-环境(G-G/G-E)交互作用。基于初步模拟
结果,我们的中心假设是,提出的方法比现有的方法在计算上更有效
方法,并获得了更健壮和强大的各种表型表现。计划中的
具体目标是:1)发展一种新的非参数方法,用于序列数据的设计和分析
具有一个或多个SD表型;2)建立高维G-G/G-E相互作用的联合-U方法
利用SD测序数据进行分析;3)提出了一种基于家族相似性的SD测序方法
数据分析,说明人口分层和家庭中丰富的稀有变异;以及4)促进
通过软件开发和协作使用新方法。拟议的研究将是
由一位早期的新研究员(NIDA K01奖获得者)发起,他组建了一个科学家团队,与
在统计遗传学、生物信息学/软件开发、SD流行病学、行为遗传学、
和临床精神病学。该项目的成功完成将解决几个重要的统计和
正在进行的测序研究中的计算差距,并推动方法和软件开发
用于SD测序数据分析。新方法和新软件在大规模标测中的应用
测序数据集也为发现新的SD相关变异和G-G/G-E提供了希望
互动,这最终将导致对SD病因的更好理解,从而产生潜在的好处
用于SD的预防和治疗。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
External validation of non-invasive prediction models for identifying ultrasonography-diagnosed fatty liver disease in a Chinese population.
用于识别中国人群中超声诊断的脂肪肝疾病的非侵入性预测模型的外部验证。
- DOI:10.1097/md.0000000000007610
- 发表时间:2017-07
- 期刊:
- 影响因子:1.6
- 作者:Shen YN;Yu MX;Gao Q;Li YY;Huang JJ;Sun CM;Qiao N;Zhang HX;Wang H;Lu Q;Wang T
- 通讯作者:Wang T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Lu其他文献
Qing Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qing Lu', 18)}}的其他基金
Computational Efficient Statistical Tools for Analyzing Substance Dependence Sequencing Data
用于分析物质依赖性测序数据的高效计算统计工具
- 批准号:
9922519 - 财政年份:2019
- 资助金额:
$ 41.3万 - 项目类别:
Methods and Software for High-dimensional Risk Prediction Research
高维风险预测研究方法和软件
- 批准号:
9975910 - 财政年份:2018
- 资助金额:
$ 41.3万 - 项目类别:
Methods and Software for High-dimensional Risk Prediction Research
高维风险预测研究方法和软件
- 批准号:
9924898 - 财政年份:2018
- 资助金额:
$ 41.3万 - 项目类别:
Methods and Software for High-dimensional Risk Prediction Research
高维风险预测研究方法和软件
- 批准号:
10170422 - 财政年份:2018
- 资助金额:
$ 41.3万 - 项目类别:
Computational Efficient Statistical Tools for Analyzing Substance Dependence Sequencing Data
用于分析物质依赖性测序数据的高效计算统计工具
- 批准号:
9453828 - 财政年份:2017
- 资助金额:
$ 41.3万 - 项目类别:
HDAC6 regulates cigarette smoke-induced endothelial barrier dysfunction and lung injury
HDAC6 调节香烟烟雾引起的内皮屏障功能障碍和肺损伤
- 批准号:
9285844 - 财政年份:2016
- 资助金额:
$ 41.3万 - 项目类别:
Gene-Gene/Gene-Environment Interactions Associated with Nicotine Dependence
与尼古丁依赖相关的基因-基因/基因-环境相互作用
- 批准号:
8620634 - 财政年份:2013
- 资助金额:
$ 41.3万 - 项目类别:
Gene-Gene/Gene-Environment Interactions Associated with Nicotine Dependence
与尼古丁依赖相关的基因-基因/基因-环境相互作用
- 批准号:
9008033 - 财政年份:2013
- 资助金额:
$ 41.3万 - 项目类别:
Gene-Gene/Gene-Environment Interactions Associated with Nicotine Dependence
与尼古丁依赖相关的基因-基因/基因-环境相互作用
- 批准号:
8443232 - 财政年份:2013
- 资助金额:
$ 41.3万 - 项目类别:
High-dimensional Statistical Genetic Approach for Family-based Orofacial Clefts
基于家族的口颌面裂的高维统计遗传学方法
- 批准号:
8227059 - 财政年份:2012
- 资助金额:
$ 41.3万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Research Grant














{{item.name}}会员




