High-dimensional Statistical Genetic Approach for Family-based Orofacial Clefts
基于家族的口颌面裂的高维统计遗传学方法
基本信息
- 批准号:8227059
- 负责人:
- 金额:$ 22.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-01 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAttentionBasic ScienceCleaved cellCleft lip with or without cleft palateClinicalClinical ResearchClinical SciencesCollaborationsComplexDataData SetDevelopmentDiseaseEnvironmental Risk FactorEquationEthnic groupFamilyFamily StudyFamily memberFutureGenesGeneticGenetic ResearchGenetic RiskGenotypeGoalsHealth BenefitHealthcareIndividualInternationalLaboratoriesLeadMedicineMethodsModelingPerformancePhenotypePlayPopulationPopulation ControlPrevention strategyResearchResearch PersonnelResearch Project GrantsRiskRoleSamplingSenior ScientistSocietiesStagingStratificationTranslatingTranslational ResearchTranslationsWorkbaseclinical practiceexperiencegene environment interactiongenetic associationgenetic variantgenome wide association studyimprovedmaternal cigarette smokingmolecular markernovelnovel strategiesorofacialpopulation basedsimulationsuccess
项目摘要
DESCRIPTION (provided by applicant): Although family studies were the basis for genetic risk prediction before the advent of modern molecular markers, they have been much less developed for risk prediction of complex diseases using high-dimensional data. Family studies offer many ideal features for large-scale risk prediction research. It provides robust protection against confounding bias when dealing with samples from multiple ethnic groups (i.e., population stratification). Aside from that, Family studies could take into account family information (i.e., genotype and phenotype information from family members) for improved risk prediction. Despite these advantages, they have been used infrequently in recent risk prediction research. The goals of this application are to develop a statistical genetic approach for high-dimensional family-based risk prediction, and to build a family-based risk prediction model by applying the proposed approach to the International Consortium of Orofacial Clefts genome-wide association study dataset. The central hypothesis is that the proposed approach, which considers a large number of genetic and environmental predictors, family information and population substructure, will outperform an existing generalized estimating equations based genotype scoring approach (GEE-GS), and will lead to a robust and accurate family-based risk prediction model for orofacial clefts. The proposed research will be initiated by an early-stage new investigator, who has assembled a research team of senior scientists, including Robert C. Elston, Jeffrey C. Murray and Brian Schutte. The team has developed novel statistical genetic approaches for risk prediction research, and has been active in orofacial clefts genetic and clinical research. In the proposed research project, the research team will turn its attention to family-based orofacial clefts risk prediction. The planned specific aims are to: 1) Develop a robust clustered likelihood ratio approach for high-dimensional family-based risk prediction and compare its performance with the GEE-GS approach through extensive simulation studies; and 2) Build a high-dimensional orofacial clefts risk prediction model by simultaneously considering a large number of genetic and environmental predictors, their interactions, and family information. If successful, the new approach will facilitate high-dimensional family- based risk prediction studies in general. The orofacial clefts risk prediction study will also lead to a novel risk prediction model that can be further replicated and evaluated through application to independent populations.
PUBLIC HEALTH RELEVANCE: Risk prediction capitalizing on emerging genetic findings, environmental risk factors and family information holds great promise for improved healthcare and personalized medicine. The proposed research by a new early-stage investigator will develop a quantitative method for high-dimensional family-based risk prediction, and will then use it to form a novel orofacial clefts risk prediction model. The success of the project will advance high-dimensional family-based risk prediction research in general and benefit translational research aimed at developing more effective and affordable prediction and prevention strategies for orofacial clefts.
描述(申请人提供):尽管在现代分子标记出现之前,家族研究是遗传风险预测的基础,但在使用高维数据进行复杂疾病风险预测方面,它们的发展还远远不够。家庭研究为大规模风险预测研究提供了许多理想的特征。在处理来自多个种族群体的样本(即人口分层)时,它可以提供强有力的保护,防止混杂偏差。除此之外,家庭研究可以考虑家庭信息(即家庭成员的基因型和表型信息)以改进风险预测。尽管有这些优点,但它们在最近的风险预测研究中很少使用。该应用程序的目标是开发一种用于高维基于家庭的风险预测的统计遗传学方法,并通过将所提出的方法应用于国际口颌面裂联盟全基因组关联研究数据集来构建基于家庭的风险预测模型。中心假设是,所提出的方法考虑了大量的遗传和环境预测因素、家庭信息和人口子结构,将优于现有的基于广义估计方程的基因型评分方法(GEE-GS),并将产生一个稳健且准确的基于家庭的口颌裂风险预测模型。拟议的研究将由一名处于早期阶段的新研究员发起,他组建了一个由资深科学家组成的研究团队,包括罗伯特·C·埃尔斯顿、杰弗里·C·穆雷和布莱恩·舒特。该团队开发了用于风险预测研究的新型统计遗传学方法,并一直活跃于口颌裂遗传学和临床研究。在拟议的研究项目中,研究团队将把注意力转向基于家庭的口面部裂风险预测。计划的具体目标是: 1) 开发一种稳健的聚类似然比方法,用于高维家庭风险预测,并通过广泛的模拟研究将其性能与 GEE-GS 方法进行比较; 2)通过同时考虑大量遗传和环境预测因子、它们的相互作用以及家庭信息,构建高维口颌裂风险预测模型。如果成功,新方法将总体上促进基于家庭的高维度风险预测研究。口面裂风险预测研究还将产生一种新的风险预测模型,可以通过应用于独立人群来进一步复制和评估。
公共卫生相关性:利用新出现的遗传发现、环境风险因素和家庭信息进行风险预测,为改善医疗保健和个性化医疗带来了巨大希望。一位新的早期研究人员提出的研究将开发一种基于高维家庭的风险预测的定量方法,然后用它来形成一种新型的口面部裂风险预测模型。该项目的成功将总体上推进基于家庭的高维风险预测研究,并有利于旨在开发更有效和负担得起的口颌裂预测和预防策略的转化研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Lu其他文献
Qing Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qing Lu', 18)}}的其他基金
Computational Efficient Statistical Tools for Analyzing Substance Dependence Sequencing Data
用于分析物质依赖性测序数据的高效计算统计工具
- 批准号:
9922519 - 财政年份:2019
- 资助金额:
$ 22.49万 - 项目类别:
Computational Efficient Statistical Tools for Analyzing Substance Dependence Sequencing Data
用于分析物质依赖性测序数据的高效计算统计工具
- 批准号:
10166816 - 财政年份:2019
- 资助金额:
$ 22.49万 - 项目类别:
Methods and Software for High-dimensional Risk Prediction Research
高维风险预测研究方法和软件
- 批准号:
9975910 - 财政年份:2018
- 资助金额:
$ 22.49万 - 项目类别:
Methods and Software for High-dimensional Risk Prediction Research
高维风险预测研究方法和软件
- 批准号:
9924898 - 财政年份:2018
- 资助金额:
$ 22.49万 - 项目类别:
Methods and Software for High-dimensional Risk Prediction Research
高维风险预测研究方法和软件
- 批准号:
10170422 - 财政年份:2018
- 资助金额:
$ 22.49万 - 项目类别:
Computational Efficient Statistical Tools for Analyzing Substance Dependence Sequencing Data
用于分析物质依赖性测序数据的高效计算统计工具
- 批准号:
9453828 - 财政年份:2017
- 资助金额:
$ 22.49万 - 项目类别:
HDAC6 regulates cigarette smoke-induced endothelial barrier dysfunction and lung injury
HDAC6 调节香烟烟雾引起的内皮屏障功能障碍和肺损伤
- 批准号:
9285844 - 财政年份:2016
- 资助金额:
$ 22.49万 - 项目类别:
Gene-Gene/Gene-Environment Interactions Associated with Nicotine Dependence
与尼古丁依赖相关的基因-基因/基因-环境相互作用
- 批准号:
8620634 - 财政年份:2013
- 资助金额:
$ 22.49万 - 项目类别:
Gene-Gene/Gene-Environment Interactions Associated with Nicotine Dependence
与尼古丁依赖相关的基因-基因/基因-环境相互作用
- 批准号:
9008033 - 财政年份:2013
- 资助金额:
$ 22.49万 - 项目类别:
Gene-Gene/Gene-Environment Interactions Associated with Nicotine Dependence
与尼古丁依赖相关的基因-基因/基因-环境相互作用
- 批准号:
8443232 - 财政年份:2013
- 资助金额:
$ 22.49万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 22.49万 - 项目类别:
Research Grant














{{item.name}}会员




