Computational Efficient Statistical Tools for Analyzing Substance Dependence Sequencing Data
用于分析物质依赖性测序数据的高效计算统计工具
基本信息
- 批准号:9922519
- 负责人:
- 金额:$ 41.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdvanced DevelopmentAttentionBehavioral GeneticsBioinformaticsCatalogsClinicalCollaborationsComplexComputer softwareComputing MethodologiesDataData AnalysesData SetDevelopmental ProcessDiagnosticDisease modelEnvironmentEpidemiologyEtiologyFamilyFutureGenesGeneticGoalsHuman GenomeJointsKnowledgeLarge-Scale SequencingLeadMeasurementMethodologyMethodsNational Institute of Drug AbusePerformancePhenotypePopulationPopulation AnalysisPreventionProcessPsychiatryResearchResearch DesignResearch PersonnelRoleScientistSoftware DesignStatistical MethodsSubstance AddictionTechnologyTestingTwin Multiple BirthVariantanalytical methodbasedesigngene environment interactiongenetic varianthigh dimensionalityimprovedinsightmultidimensional dataneglectnext generation sequencingnovelpopulation basedpopulation stratificationrare variantsimulationsoftware developmentsuccesstool
项目摘要
Project Summary
With advancements in next-generation sequencing technologies, sequencing studies has become increasingly
used in substance dependence (SD) research. These studies generate a massive amount of sequencing data
and allow researchers to comprehensively investigate the role of a deep catalog of genetic variants in SD.
Although the ongoing sequencing studies hold great promise for unraveling novel variants that contribute to
SD, the high-dimensional data, low frequent variants, complex SD etiology, and heterogeneous SD
phenotypes create tremendous analytic and computational challenges. Developing robust and powerful
methods and computationally efficient software will address the challenges in SD sequencing data analysis
and enhance our ability to identify new SD-related variants. The goals of this application are to develop new
methods and software for designing and analyzing population-based and family-based sequencing data with
single or multiple phenotypes, and to use them in collaborative research to investigate genetic variants and
gene-gene/gene-environment (G-G/G-E) interactions associated with SD. Based on the preliminary simulation
results, our central hypothesis is that the proposed methods are more computationally efficient than existing
methods, and attain a more robust and powerful performance for various types of phenotypes. The planned
specific aims are to: 1) develop a new non-parametric method for the design and analysis of sequencing data
with one or multiple SD phenotypes; 2) develop a Joint-U method for high-dimensional G-G/G-E interaction
analysis with SD sequencing data; 3) develop a family-similarity-U method for family-based SD sequencing
data analysis, accounting for population stratification and rare variants enriched in families; and 4) facilitate the
use of the new methods through software development and collaboration. The proposed research will be
initiated by an early-stage new investigator (NIDA K01 awardee), who has assembled a team of scientists with
expertise in statistical genetics, bioinformatics/software development, SD epidemiology, behavioral genetics,
and clinical psychiatry. The successful completion of this project will address several important statistical and
computational gaps in ongoing sequencing studies, and advance the methodology and software development
for SD sequencing data analysis. The application of the new methods and software to large-scale SD
sequencing datasets also holds promise for the discovery of new SD-associated variants and G-G/G-E
interactions, which will ultimately lead to a better understanding of SD etiology, with resulting potential benefits
for SD prevention and treatment.
项目摘要
随着下一代测序技术的进步,测序研究变得越来越多
用于物质依赖(SD)研究。这些研究产生了大量的测序数据
并允许研究人员全面研究SD遗传变异的深层目录的作用。
尽管正在进行的测序研究对揭示有助于促进的新型变种有很大的希望
SD,高维数据,低频变体,复杂的SD病因和异质SD
表型引起了巨大的分析和计算挑战。发展强大而有力
方法和计算高效的软件将解决SD测序数据分析中的挑战
并增强我们识别新型SD相关变体的能力。该应用的目标是开发新的
使用基于人群和家庭的测序数据设计和分析的方法和软件
单个或多种表型,并在协作研究中使用它们来研究遗传变异和
与SD相关的基因基因/基因环境(G-G/G-E)相互作用。基于初步模拟
结果,我们的中心假设是所提出的方法在计算上比现有方法更有效
方法,并为各种表型实现更强大,更强大的性能。计划
具体目的是:1)开发一种新的非参数方法来设计和分析测序数据
具有一个或多个SD表型; 2)开发一种用于高维g-g/g-E相互作用的联合-U方法
使用SD测序数据分析; 3)开发一种基于家庭的SD测序的family Simality-U方法
数据分析,占人口分层的解释以及富含家庭的稀有变体; 4)促进
通过软件开发和协作使用新方法。拟议的研究将是
由早期新调查员(NIDA K01获奖者)发起的,他与
统计遗传学,生物信息学/软件开发,SD流行病学,行为遗传学的专业知识,
和临床精神病学。该项目的成功完成将解决几个重要的统计和
正在进行的测序研究中的计算差距,并推进方法和软件开发
用于SD测序数据分析。将新方法和软件应用于大规模SD
测序数据集还有望发现新的SD相关变体和G-G/G-E
互动最终将导致对SD病因的更好理解,从而带来潜在的好处
用于SD预防和治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Lu其他文献
Qing Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qing Lu', 18)}}的其他基金
Computational Efficient Statistical Tools for Analyzing Substance Dependence Sequencing Data
用于分析物质依赖性测序数据的高效计算统计工具
- 批准号:
10166816 - 财政年份:2019
- 资助金额:
$ 41.22万 - 项目类别:
Methods and Software for High-dimensional Risk Prediction Research
高维风险预测研究方法和软件
- 批准号:
9975910 - 财政年份:2018
- 资助金额:
$ 41.22万 - 项目类别:
Methods and Software for High-dimensional Risk Prediction Research
高维风险预测研究方法和软件
- 批准号:
9924898 - 财政年份:2018
- 资助金额:
$ 41.22万 - 项目类别:
Methods and Software for High-dimensional Risk Prediction Research
高维风险预测研究方法和软件
- 批准号:
10170422 - 财政年份:2018
- 资助金额:
$ 41.22万 - 项目类别:
Computational Efficient Statistical Tools for Analyzing Substance Dependence Sequencing Data
用于分析物质依赖性测序数据的高效计算统计工具
- 批准号:
9453828 - 财政年份:2017
- 资助金额:
$ 41.22万 - 项目类别:
HDAC6 regulates cigarette smoke-induced endothelial barrier dysfunction and lung injury
HDAC6 调节香烟烟雾引起的内皮屏障功能障碍和肺损伤
- 批准号:
9285844 - 财政年份:2016
- 资助金额:
$ 41.22万 - 项目类别:
Gene-Gene/Gene-Environment Interactions Associated with Nicotine Dependence
与尼古丁依赖相关的基因-基因/基因-环境相互作用
- 批准号:
8620634 - 财政年份:2013
- 资助金额:
$ 41.22万 - 项目类别:
Gene-Gene/Gene-Environment Interactions Associated with Nicotine Dependence
与尼古丁依赖相关的基因-基因/基因-环境相互作用
- 批准号:
9008033 - 财政年份:2013
- 资助金额:
$ 41.22万 - 项目类别:
Gene-Gene/Gene-Environment Interactions Associated with Nicotine Dependence
与尼古丁依赖相关的基因-基因/基因-环境相互作用
- 批准号:
8443232 - 财政年份:2013
- 资助金额:
$ 41.22万 - 项目类别:
High-dimensional Statistical Genetic Approach for Family-based Orofacial Clefts
基于家族的口颌面裂的高维统计遗传学方法
- 批准号:
8227059 - 财政年份:2012
- 资助金额:
$ 41.22万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Center for the Promotion of Cancer Health Equity (CePCHE)
癌症健康公平促进中心 (CePCHE)
- 批准号:
10557579 - 财政年份:2023
- 资助金额:
$ 41.22万 - 项目类别:
PRE-DETERMINE: Advancing Sudden Arrhythmic Death Prediction in Coronary Artery Disease in the Absence of Severe Systolic Dysfunction
预先确定:在没有严重收缩功能障碍的情况下推进冠状动脉疾病的心律失常性猝死预测
- 批准号:
10608859 - 财政年份:2023
- 资助金额:
$ 41.22万 - 项目类别:
Artificial Intelligence powered virtual digital twins to construct and validate AI automated tools for safer MR-guided adaptive RT of abdominal cancers
人工智能支持虚拟数字双胞胎来构建和验证人工智能自动化工具,以实现更安全的 MR 引导的腹部癌症自适应放疗
- 批准号:
10736347 - 财政年份:2023
- 资助金额:
$ 41.22万 - 项目类别:
Development of a rapid, scalable, and deployable point-of-care blood volume diagnostic for monitoring postpartum and trauma-related hemorrhage
开发快速、可扩展且可部署的护理点血容量诊断,用于监测产后和创伤相关出血
- 批准号:
10603819 - 财政年份:2023
- 资助金额:
$ 41.22万 - 项目类别: