Methods and Software for High-dimensional Risk Prediction Research
高维风险预测研究方法和软件
基本信息
- 批准号:9975910
- 负责人:
- 金额:$ 25.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease riskAreaBiological MarkersClinicalClinical DataCollaborationsComplexComputer softwareDNA sequencingDataData SetDevelopmentDiffusionDimensionsDiseaseEtiologyFamilyFamily StudyFutureGenesGeneticGenetic HeterogeneityGenomicsGoalsHealthcareHuman CharacteristicsHuman GenomeImage AnalysisIndividualLassoLeadMapsMeasuresMethodologyMethodsModelingMutationPerformancePhenotypePreventive treatmentProcessProteomicsResearchResearch PersonnelRiskSingle Nucleotide PolymorphismTrans-Omics for Precision MedicineTranslational Researchbasecostdesigndisorder riskepigenomicsgenetic profilinghigh dimensionalityhigh throughput technologyhuman diseaseimprovedmultidimensional datanovelprecision medicineprogramsrare variantrisk prediction modelsimulationsoftware developmentsuccesstooltranscriptomicstreatment strategy
项目摘要
Project Summary
The use of human genome discoveries and other established risk predictors for early disease prediction is an
essential step towards precision medicine. However, the task of developing clinically useful risk prediction
models is hampered by the present state of evidence, in which currently known risk predictors are insufficient
for accurately predicting most human diseases. With rapidly evolving high-throughput technologies and ever-
decreasing costs, it becomes feasible to collect diverse types of omic data in large-scale studies. While the
multi-level omic data generated from these studies hold great promise for novel predictors to further improve
existing models, the high-dimensionality of omic data, the heterogeneous etiology of human diseases, and the
complex inter-relationships among various levels of omic data bring tremendous analytic challenges. New
methods and software are in great need to address these challenges, and to facilitate ongoing and future high-
dimensional risk prediction research. The goal of this application is thus to complete the development of a
random field (RF) framework and software for high-dimensional risk prediction research using omic data, and
then apply the framework to Alzheimer's disease (AD). The proposed research will integrate a kernel function
and a spatial adaptive lasso into RF, making it applicable for high-dimensional data with a large number of
predictors. Moreover, the new framework is able to utilize the family design to address several important issues
(e.g., genetic heterogeneity) in predicting complex diseases, and will adopt a cross-diffusion process to
integrate information from different levels of omic data. Based on preliminary simulation results, our central
hypothesis is that the proposed framework attains a more accurate and robust performance than existing
methods. The successful completion of this project should address analytical challenges faced by massive
amounts of omic data, and advance the methodology and software development for high-dimensional risk
prediction in general. The application of the new methods and software to large-scale AD datasets could also
lead to novel AD risk prediction models that could be further replicated and investigated through collaborative
research.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Lu其他文献
Qing Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qing Lu', 18)}}的其他基金
Computational Efficient Statistical Tools for Analyzing Substance Dependence Sequencing Data
用于分析物质依赖性测序数据的高效计算统计工具
- 批准号:
9922519 - 财政年份:2019
- 资助金额:
$ 25.54万 - 项目类别:
Computational Efficient Statistical Tools for Analyzing Substance Dependence Sequencing Data
用于分析物质依赖性测序数据的高效计算统计工具
- 批准号:
10166816 - 财政年份:2019
- 资助金额:
$ 25.54万 - 项目类别:
Methods and Software for High-dimensional Risk Prediction Research
高维风险预测研究方法和软件
- 批准号:
9924898 - 财政年份:2018
- 资助金额:
$ 25.54万 - 项目类别:
Methods and Software for High-dimensional Risk Prediction Research
高维风险预测研究方法和软件
- 批准号:
10170422 - 财政年份:2018
- 资助金额:
$ 25.54万 - 项目类别:
Computational Efficient Statistical Tools for Analyzing Substance Dependence Sequencing Data
用于分析物质依赖性测序数据的高效计算统计工具
- 批准号:
9453828 - 财政年份:2017
- 资助金额:
$ 25.54万 - 项目类别:
HDAC6 regulates cigarette smoke-induced endothelial barrier dysfunction and lung injury
HDAC6 调节香烟烟雾引起的内皮屏障功能障碍和肺损伤
- 批准号:
9285844 - 财政年份:2016
- 资助金额:
$ 25.54万 - 项目类别:
Gene-Gene/Gene-Environment Interactions Associated with Nicotine Dependence
与尼古丁依赖相关的基因-基因/基因-环境相互作用
- 批准号:
8620634 - 财政年份:2013
- 资助金额:
$ 25.54万 - 项目类别:
Gene-Gene/Gene-Environment Interactions Associated with Nicotine Dependence
与尼古丁依赖相关的基因-基因/基因-环境相互作用
- 批准号:
9008033 - 财政年份:2013
- 资助金额:
$ 25.54万 - 项目类别:
Gene-Gene/Gene-Environment Interactions Associated with Nicotine Dependence
与尼古丁依赖相关的基因-基因/基因-环境相互作用
- 批准号:
8443232 - 财政年份:2013
- 资助金额:
$ 25.54万 - 项目类别:
High-dimensional Statistical Genetic Approach for Family-based Orofacial Clefts
基于家族的口颌面裂的高维统计遗传学方法
- 批准号:
8227059 - 财政年份:2012
- 资助金额:
$ 25.54万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 25.54万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 25.54万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 25.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 25.54万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 25.54万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 25.54万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 25.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 25.54万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 25.54万 - 项目类别:
Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 25.54万 - 项目类别:
Research Fellowships














{{item.name}}会员




