Strial vascular pathology from acoustic trauma
声损伤引起的心房血管病理学
基本信息
- 批准号:10174903
- 负责人:
- 金额:$ 39.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcoustic TraumaAffectAfferent NeuronsAgingAnimalsAuditoryAuditory ThresholdBasement membraneBiologicalBloodBlood VesselsBlood capillariesBlood flowBrainBromodeoxyuridineCaliberCardiologyCell LineCellsClinicalCochleaCommunicationConfocal MicroscopyConsumptionDevelopmentDiseaseEarEdemaElectron MicroscopyEndothelial CellsEnergy SupplyExposure toExtravasationFailureFoundationsFunctional disorderGene DeliveryGoalsGrowth FactorHair CellsHealthHearingHearing problemHeartHormonesHumanHypoxiaImmunophenotypingImpairmentIn VitroIndividualInfarctionInjuryKidney DiseasesLabelLabyrinthLateralLeadLifeLigandsLoudnessMaintenanceMediatingMembrane ProteinsMesenchymalMetabolicModelingMolecularMusMyocardial InfarctionMyofibroblastNatural regenerationNeuronsNoiseNuclearOrganPDGFA genePathologicPathologyPericytesPhenotypePhysiologyPlatelet-Derived Growth Factor BPlatelet-Derived Growth Factor beta ReceptorPopulationProductionProliferatingPropertyProteinsRecoveryRegulationReporterResearchResidual stateResolutionRetinaRoleSensorySignal PathwaySignal TransductionSiteSocial isolationSourceStressStria VascularisStrokeStructureSudden DeafnessSystemTestingTissuesTransforming Growth Factor betaTransforming Growth FactorsTransgenic MiceTransplantationTraumaVascular DiseasesVascular blood supplyangiogenesisbaseblood perfusiondeafnessdensitydiabetic patientfeasibility testingfibrogenesishearing impairmenthearing preservationheart functionimprovedinhibitor/antagonistinjury and repairmatrigelmigrationneonatal micenetwork modelsneurotrophic factornovelnovel strategiespigment epithelium-derived factorplatelet-derived growth factor BBpreservationpreventprotein expressionreceptorrepairedrestorationsoundstem cellssuccesstherapeutic targetwound healing
项目摘要
PROJECT SUMMARY
Energy supply to the ear is critical for hearing function since the ear is one of the highest energy consuming
organs. Insufficient energy can result from insufficient blood flow to the cochlea contributing to a wide range of
clinical hearing disorders such as loud sound-induced hearing loss, hearing loss related to ageing, and sudden
deafness, which can largely impact the quality of human life by causing individual communication problems
and social isolation. We believe that success in repair and regeneration of hearing function following loss of
sensory cells requires parallel restoration or maintenance of an efficient blood supply. The proposed research
is part of a longer range study on the role of pericytes in the physiology of the cochlea, but is specifically
focused on the pericyte pathology that occurs in loud sound-induced lateral wall microcirculatory dysfunction.
Pericytes are multipotent mesenchymal-like cells and are primarily located on microvessels. Normal function of
pericytes is vital for blood flow regulation, vascular integrity, angiogenesis and tissue fibrogenesis. Pericyte
pathology is profoundly associated with many organ diseases such as brain stroke, heart infarction, and retinal
failure. Therapeutic targeting of pericytes has been considered a novel treatment for many of those clinical
diseases. Cochlear pericytes are extremely vulnerable and sensitive to damage, but are critical for regulation
of cochlear blood flow and maintaining tightness of the blood-labyrinth barrier in the stria vascularis. More
specifically they are highly responsive to stress such as acoustic trauma. Upon exposure to loud sound,
cochlear pericytes undergo striking changes in their biological properties, but the molecular mechanisms that
underline those changes have not yet been studied. In this five year proposal, we will determine what
molecular signals lead to loud sound-induced pericyte migration away from the capillaries and their phenotype
changes. We will also determine whether transplantation of fresh pericytes such as neo-pericytes (derived from
neonatal mice) to noise-damaged cochlea can repair loud sound-damaged microvessels and restore vascular
function. The success of each aim will inevitably lead to the development of new protective and restorative
therapies for a normal blood flow to cochlea― the critical foundation of hearing preservation or/and restoration.
项目摘要
对耳朵的能量供应对于听力功能是至关重要的,因为耳朵是最高能量消耗之一。
机关能量不足可能是由于流向耳蜗的血流不足而导致的,从而导致各种各样的疾病。
临床听力障碍,如响亮的声音引起的听力损失,与衰老有关的听力损失,以及突发性听力损失。
耳聋,会导致个人沟通问题,从而在很大程度上影响人类的生活质量
和社会孤立。我们相信,在听力损失后,
感觉细胞需要平行恢复或维持有效的血液供应。拟议研究
这是一项关于周细胞在耳蜗生理学中作用的长期研究的一部分,但具体来说,
集中在周细胞病理发生在响亮的声音引起的侧壁微循环功能障碍。
周细胞是多能间充质样细胞,主要位于微血管上。正常功能
周细胞对于血流调节、血管完整性、血管生成和组织纤维形成至关重要。周细胞
病理学与许多器官疾病如脑中风、心脏梗塞和视网膜病变密切相关。
失败周细胞的治疗性靶向已经被认为是许多那些临床病症的新治疗方法。
疾病皮质周细胞对损伤极其脆弱和敏感,但对于调节至关重要
耳蜗血流量和维持血管纹中血迷路屏障的紧密性。更
特别地,它们对应力如声损伤高度敏感。一旦暴露在巨大的声音中,
耳蜗周细胞的生物学特性发生了显著的变化,但
强调这些变化尚未得到研究。在这个五年计划中,我们将确定
分子信号导致高声诱导的周细胞迁移远离毛细血管及其表型
变化我们还将确定是否移植新鲜周细胞,如新生周细胞(来源于
新生小鼠)对噪声损伤耳蜗的作用可以修复高声损伤的微血管,
功能每个目标的成功将不可避免地导致新的保护性和恢复性的发展。
耳蜗血流正常的治疗-听力保护或/和恢复的关键基础。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaorui Shi其他文献
Xiaorui Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaorui Shi', 18)}}的其他基金
The effects of cochlear pericytes and pericyte-related vascular pathology on hearing function
耳蜗周细胞及周细胞相关血管病理对听力功能的影响
- 批准号:
10553675 - 财政年份:2020
- 资助金额:
$ 39.16万 - 项目类别:
The effects of cochlear pericytes and pericyte-related vascular pathology on hearing function
耳蜗周细胞及周细胞相关血管病理对听力功能的影响
- 批准号:
10116361 - 财政年份:2020
- 资助金额:
$ 39.16万 - 项目类别:
The effects of cochlear pericytes and pericyte-related vascular pathology on hearing function
耳蜗周细胞及周细胞相关血管病理对听力功能的影响
- 批准号:
10327721 - 财政年份:2020
- 资助金额:
$ 39.16万 - 项目类别:
Perivascular macrophages endothelial interactions at the blood labyrinth barrier
血管周围巨噬细胞在血迷路屏障处的内皮相互作用
- 批准号:
8500225 - 财政年份:2012
- 资助金额:
$ 39.16万 - 项目类别:
Perivascular macrophages endothelial interactions at the blood labyrinth barrier
血管周围巨噬细胞在血迷路屏障处的内皮相互作用
- 批准号:
8386152 - 财政年份:2012
- 资助金额:
$ 39.16万 - 项目类别:
Fibrovascular coupling in the cochlea and pericyte recruitment after noise
噪声后耳蜗中的纤维血管耦合和周细胞募集
- 批准号:
8079462 - 财政年份:2010
- 资助金额:
$ 39.16万 - 项目类别:
Fibrovascular coupling in the cochlea and pericyte recruitment after noise
噪声后耳蜗中的纤维血管耦合和周细胞募集
- 批准号:
8664362 - 财政年份:2010
- 资助金额:
$ 39.16万 - 项目类别:
Fibrovascular coupling in the cochlea and pericyte recruitment after noise
噪声后耳蜗中的纤维血管耦合和周细胞募集
- 批准号:
8471544 - 财政年份:2010
- 资助金额:
$ 39.16万 - 项目类别:
相似海外基金
Cellular biological investigation of cochlear function after acoustic trauma in animals models.
动物模型声损伤后耳蜗功能的细胞生物学研究。
- 批准号:
24791814 - 财政年份:2012
- 资助金额:
$ 39.16万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Pathological ensembles in the auditory thalamocortical circuit following acoustic trauma
声损伤后听觉丘脑皮层回路的病理整体
- 批准号:
MR/J004448/1 - 财政年份:2012
- 资助金额:
$ 39.16万 - 项目类别:
Research Grant
A study of inner ear immune response after acoustic trauma
声损伤后内耳免疫反应的研究
- 批准号:
21791602 - 财政年份:2009
- 资助金额:
$ 39.16万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Cytokine expression in the cochlear tissue in the course of wound healing caused by acoustic trauma
声损伤伤口愈合过程中耳蜗组织细胞因子的表达
- 批准号:
19791197 - 财政年份:2007
- 资助金额:
$ 39.16万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




