Phenotype Transitions in Small Cell Lung Cancer

小细胞肺癌的表型转变

基本信息

  • 批准号:
    10176419
  • 负责人:
  • 金额:
    $ 51.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-09 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Abstract Lung cancer is the leading cause of cancer related deaths. In its most lethal form, small-cell lung cancer (SCLC), heterogeneity correlates with aggressiveness, however no driver mutations distinguishing SCLC subtypes have been identified. Another singularity of SCLC is that it responds well to initial treatment but quickly relapses into resistance, suggesting phenotypic plasticity. In this basic project, we will investigate the role of transcriptional and signaling mechanisms in promoting SCLC phenotypic heterogeneity and plastic state transitions, leading to aggressiveness and rapid relapse. Our preliminary results indicate that SCLC heterogeneity is more extensive than the canonical neuroendocrine (NE) and mesenchymal-like (ML) subtypes, and includes multiple hybrid states. Most significantly, we found that drug treatment results in phenotypic transitions toward the hybrid states, implicating them in resistance. Based on these data, our central hypothesis is that SCLC is a heterogeneous mix of NE, ML and hybrid phenotypic states and that, due to phenotypic plasticity, transitions between these states is a key mechanism of treatment evasion in SCLC. To test this hypothesis, we will combine computation and experiments to characterize the global landscape of phenotypes in SCLC, and define the impact of phenotypic transitions on resistance. In Aim1, we will identify a regulatory transcription factor (TF) network that controls the differentiation of SCLC cells into NE, ML, and hybrid phenotypic states; validate model predicted phenotypes and quantify their drug sensitivity; and, define reprogramming pathways to drug- sensitive states. Our approach pipeline is comprised of phenotypic clustering and gene co-expression network analysis on SCLC tumor and cell line data, simulations of logic-based TF network models to prioritize TF targets for reprogramming, and experimental validation of model predictions in vitro and in vivo. In Aim2, we will quantify phenotype sensitivity to chemotherapy and plasticity in response to signaling perturbations; identify perturbations that promote phenotype switching; and, test optimal drug/perturbagen combinations that maximize SCLC cell killing under treatment. Phenotypes and signaling pathways will be defined by flow and mass cytometry. SCLC clonal dynamics in response to perturbations will be quantified using a stochastic phenotype transition to prioritize drug/perturbagen combinations for experimental validation. Drug sensitivity and plasticity of SCLC phenotypes will be assessed with the drug-induced proliferation rate metric, which we recently described, and time series single-cell flow or mass cytometry. Success of this project will have translational impact by empowering searches for targeted therapies that reprogram drug-resistant cells toward drug-sensitive cells, which we anticipate will lead to significantly improved patient outcomes in SCLC. We further anticipate that this approach will be useful in other cancer types, opening the doors to a new paradigm of cancer treatment based on epigenetic tumor reprogramming.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlos Federico Lopez其他文献

Carlos Federico Lopez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlos Federico Lopez', 18)}}的其他基金

Phenotype Transitions in Small Cell Lung Cancer
小细胞肺癌的表型转变
  • 批准号:
    10411428
  • 财政年份:
    2017
  • 资助金额:
    $ 51.19万
  • 项目类别:
Studies of Receptor Mediated Signal Transduction Processes in Mammalian Cancer Bi
哺乳动物癌症中受体介导的信号转导过程的研究
  • 批准号:
    8535661
  • 财政年份:
    2011
  • 资助金额:
    $ 51.19万
  • 项目类别:
Studies of Receptor Mediated Signal Transduction Processes in Mammalian Cancer Bi
哺乳动物癌症中受体介导的信号转导过程的研究
  • 批准号:
    8329723
  • 财政年份:
    2011
  • 资助金额:
    $ 51.19万
  • 项目类别:
Studies of Receptor Mediated Signal Transduction Processes in Mammalian Cancer Bi
哺乳动物癌症中受体介导的信号转导过程的研究
  • 批准号:
    8111595
  • 财政年份:
    2011
  • 资助金额:
    $ 51.19万
  • 项目类别:

相似海外基金

HNDS-R: Connectivity, Inclusiveness, and the Permeability of Basic Science
HNDS-R:基础科学的连通性、包容性和渗透性
  • 批准号:
    2318404
  • 财政年份:
    2023
  • 资助金额:
    $ 51.19万
  • 项目类别:
    Standard Grant
Advancing the basic science of membrane permeability in macrocyclic peptides
推进大环肽膜渗透性的基础科学
  • 批准号:
    10552484
  • 财政年份:
    2023
  • 资助金额:
    $ 51.19万
  • 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
  • 批准号:
    10576701
  • 财政年份:
    2023
  • 资助金额:
    $ 51.19万
  • 项目类别:
Bringing together communities and basic science researchers to build stronger relationships
将社区和基础科学研究人员聚集在一起,建立更牢固的关系
  • 批准号:
    480914
  • 财政年份:
    2023
  • 资助金额:
    $ 51.19万
  • 项目类别:
    Miscellaneous Programs
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
  • 批准号:
    FL210100071
  • 财政年份:
    2022
  • 资助金额:
    $ 51.19万
  • 项目类别:
    Australian Laureate Fellowships
Coordinating and Data Management Center for Translational and Basic Science Research in Early Lesions
早期病变转化和基础科学研究协调和数据管理中心
  • 批准号:
    10517004
  • 财政年份:
    2022
  • 资助金额:
    $ 51.19万
  • 项目类别:
Developing science communication on large scale basic science represented by accelerator science
发展以加速器科学为代表的大规模基础科学科学传播
  • 批准号:
    22K02974
  • 财政年份:
    2022
  • 资助金额:
    $ 51.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
UCSF - UCB TRAC Basic Science CORE
UCSF - UCB TRAC 基础科学核心
  • 批准号:
    10674711
  • 财政年份:
    2022
  • 资助金额:
    $ 51.19万
  • 项目类别:
Basic Science Core - Imaging
基础科学核心 - 成像
  • 批准号:
    10588228
  • 财政年份:
    2022
  • 资助金额:
    $ 51.19万
  • 项目类别:
Basic Science Core - Biosafety & Biocontainment Core (BBC)
基础科学核心 - 生物安全
  • 批准号:
    10431468
  • 财政年份:
    2022
  • 资助金额:
    $ 51.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了