Biosynthesis and Synthetic Biology of Antibiotic Oligosaccharides
抗生素寡糖的生物合成及合成生物学
基本信息
- 批准号:10177854
- 负责人:
- 金额:$ 53.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-hydroxybutanalAcidsActive SitesAcylationAddressAmalgamAnabolismAnimalsAntibiotic ResistanceAntibioticsBacterial InfectionsBindingBinding SitesBiochemicalBiologicalBiological AssayBiological AvailabilityCationsCellsCenters for Disease Control and Prevention (U.S.)ChemicalsClinicClinicalComplexCryoelectron MicroscopyDevelopmentDisaccharidesDrug resistanceEnterobacteriaceaeFamilyFluorineFormulationGenerationsGeneticGoalsGram-Positive BacteriaHealthHumanHydrogen BondingIn VitroKnowledgeLactonesMethodsMethylationMethyltransferaseMinor GrooveMolecular ConformationMolecular TargetMulti-Drug ResistanceNatural ProductsOligosaccharidesOrganismOxidasesPathway interactionsPeptidesPeptidyltransferasePharmacologyPhasePhase III Clinical TrialsPropertyProteinsResistanceResistance developmentRibosomal InteractionRibosomal RNARibosomesRoentgen RaysRoleSiteStructureStructure-Activity RelationshipSystemTestingTherapeutic IndexTimeToxic effectTranslationsVariantWithdrawalanalogcarbon skeletonchemical synthesisclinical applicationclinical developmentcomparativedesigndrug resistant bacteriagenome editinghydroxyl groupimprovedin vivoinsightmembermetabolomicsmicroorganismmutantnovelpathogenic bacteriapre-clinicalprototyperesistant strainscaffoldsmall moleculesugarsynthetic biologytoolvirtual
项目摘要
PROJECT SUMMARY
Orthosomycins are a family of potent antibiotic oligosaccharides that target a wide spectrum of gram-positive
bacteria, including most antibiotic-resistant strains. It is less appreciated that subsets of orthosomycins also
target gram-negative drug-resistant bacteria, including members of the Enterobacteriaceae family, which are
ranked as some of the highest threats to human health by the Centers for Disease Control and Prevention.
Orthosomycins demonstrate high potency, good bioavailability, and low toxicity in vivo in both animals and
humans. The promise of this class was explored preclinically, and through subsequent development of one
orthosomycin, everninomicin A (Ziracin). Despite Ziracin’s advancement to phase III clinical trials, unstated
pharmacological complications led to a strategic decision to discontinue clinical development of this scaffold in
2000. In the intervening time, no attempts have been made to improve the orthosomycins. We speculate that
addressing pharmacological liabilities was complicated due to the unknown reasons for withdrawal, the
fragmentary understanding of the everninomicin molecular target, and the challenges inherent in orthosomycin
chemical synthesis, which requires at least 130 steps.
Recently, the structures of orthosomycins bound in the bacterial ribosome have been solved, revolutionizing
our understanding of their molecular target and mechanism of action and creating opportunities to improve
ribosome interactions and pharmacological properties via targeted structural changes. Contemporaneously, we
developed a set of genetic tools for editing the genome of the producing organisms, as well as advanced the
understanding of the biochemical mechanisms and pathways of orthosomycin assembly. We have initiated, but
not completed, an exploration of the formation of the interglycosidic orthoester linkages, the formation and
attachment of dichloroisoeverninic acid, and the biosynthesis of the eurekanate sugar, unique to orthosomycin
antibiotics. This convergence of progress in the understanding of orthosomycin biosynthesis and target
identification provides an unprecedented opportunity to address the complications limiting the clinical utility of
these molecules by improving their potency and pharmacological properties. To further this goal, our specific
aims are to (1) characterize and tune the interactions of orthosomycins with rProtein uL16, (2) investigate h89
and h91 spanning interactions of orthosomycins, and (3) develop access to unnatural orthosomycin analogs with
targeted structural changes impacting the rRNA h91 pocket.
Premise: In this project, we outline probable origins and solutions to pharmacological liabilities. Leveraging
biosynthetic insights, we will generate targeted changes in the scaffolds of orthosomycins using a combined
genetic, chemical, and biochemical approach. With these designed variants, we will determine the extent to
which structural variations can improve ribosome binding, as well as modify pharmacological properties to
remove liabilities and improve the therapeutic index.
项目摘要
Orthosomycins是一个有效的抗生素寡糖家族,靶向广谱革兰氏阳性菌,
细菌,包括大多数耐药菌株。很少有人认识到,正霉素的子集也
革兰氏阴性耐药菌,包括肠杆菌科成员,
被疾病控制和预防中心列为人类健康的最大威胁。
正霉素在动物和哺乳动物体内均表现出高效力、良好的生物利用度和低毒性。
人类该课程的前景在临床前以及随后的开发中得到了探索
orthosomycin、everninomicin A(Ziracin)。尽管Ziracin进入了III期临床试验,但未声明
药理学并发症导致战略决定停止这种支架的临床开发,
2000.在此期间,没有尝试改进正霉素。我们推测
由于退出原因不明,解决药理学责任是复杂的,
对everninomicin分子靶点的不完整理解,以及正骨霉素固有的挑战
化学合成,至少需要130个步骤。
最近,结合在细菌核糖体中的正霉素的结构已经被解决,
我们对它们的分子靶点和作用机制的理解,并创造机会,
核糖体相互作用和药理学性质通过有针对性的结构变化。同时,我们
开发了一套用于编辑生产生物体基因组的遗传工具,并推进了
了解正骨霉素组装的生化机制和途径。我们已经开始了,但是
未完成,探索了糖苷间原酸酯键的形成,
二氯异艾弗尼酸的附着,以及正霉素特有的尤里卡酸糖的生物合成
抗生素这种融合的进展,了解正骨霉素的生物合成和目标
识别提供了前所未有的机会,以解决限制临床应用的并发症,
这些分子通过提高它们的效力和药理学性质。为了实现这一目标,我们的具体
目的是(1)表征和调节正糖霉素与rProtein uL16的相互作用,(2)研究h89
和h91跨越正霉素的相互作用,以及(3)开发获得非天然正霉素类似物的途径,
影响rRNA h91口袋的靶向结构变化。
在这个项目中,我们概述了药理学责任的可能起源和解决方案。利用
生物合成的见解,我们将产生有针对性的变化,在支架的正霉素使用组合
基因、化学和生物化学方法。通过这些设计的变体,我们将确定
其结构变化可以改善核糖体结合,以及改变药理学性质,
解除负担,提高治疗指数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRIAN O BACHMANN其他文献
BRIAN O BACHMANN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRIAN O BACHMANN', 18)}}的其他基金
Vanderbilt Chemical Biology Interface Training Program
范德比尔特化学生物学界面培训计划
- 批准号:
10626531 - 财政年份:2023
- 资助金额:
$ 53.9万 - 项目类别:
Biosynthesis and Synthetic Biology of Antibiotic Oligosaccharides
抗生素寡糖的生物合成及合成生物学
- 批准号:
10408814 - 财政年份:2019
- 资助金额:
$ 53.9万 - 项目类别:
Single Cell Methods for Bioeffector Discovery and Analysis
用于生物效应器发现和分析的单细胞方法
- 批准号:
10545185 - 财政年份:2018
- 资助金额:
$ 53.9万 - 项目类别:
Single Cell Methods for Bioeffector Discovery and Analysis
用于生物效应器发现和分析的单细胞方法
- 批准号:
10329957 - 财政年份:2018
- 资助金额:
$ 53.9万 - 项目类别:
New Methodologies for Accelerating Natural Product Discovery
加速天然产品发现的新方法
- 批准号:
8272698 - 财政年份:2010
- 资助金额:
$ 53.9万 - 项目类别:
New Methodologies for Accelerating Natural Product Discovery
加速天然产品发现的新方法
- 批准号:
7845955 - 财政年份:2010
- 资助金额:
$ 53.9万 - 项目类别:
New Methodologies for Accelerating Natural Product Discovery
加速天然产品发现的新方法
- 批准号:
8129632 - 财政年份:2010
- 资助金额:
$ 53.9万 - 项目类别:
New Methodologies for Accelerating Natural Product Discovery
加速天然产品发现的新方法
- 批准号:
9013482 - 财政年份:2010
- 资助金额:
$ 53.9万 - 项目类别:
New Methodologies for Accelerating Natural Product Discovery
加速天然产品发现的新方法
- 批准号:
9421557 - 财政年份:2010
- 资助金额:
$ 53.9万 - 项目类别:
New Methodologies for Accelerating Natural Product Discovery
加速天然产品发现的新方法
- 批准号:
8888885 - 财政年份:2010
- 资助金额:
$ 53.9万 - 项目类别:
相似国自然基金
具有抗癌活性的天然产物金霉酸(Aureolic acids)全合成与选择性构建2-脱氧糖苷键
- 批准号:22007039
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
海洋放线菌来源聚酮类化合物Pteridic acids生物合成机制研究
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
手性Lewis Acids催化的分子内串联1,5-氢迁移/环合反应及其在构建结构多样性手性含氮杂环化合物中的应用
- 批准号:21372217
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
对空气稳定的新型的有机金属Lewis Acids催化剂制备、表征与应用研究
- 批准号:21172061
- 批准年份:2011
- 资助金额:30.0 万元
- 项目类别:面上项目
钛及含钛Lewis acids促臭氧/过氧化氢体系氧化性能的广普性、高效性及其机制
- 批准号:21176225
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Zip Nucleic Acids引物对高度降解和低拷贝DNA检材的STR分型研究
- 批准号:81072511
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
海洋天然产物Makaluvic acids 的全合成及其对南海鱼虱存活的影响
- 批准号:30660215
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Lipid nanoparticle-mediated Inhalation delivery of anti-viral nucleic acids
脂质纳米颗粒介导的抗病毒核酸的吸入递送
- 批准号:
502577 - 财政年份:2024
- 资助金额:
$ 53.9万 - 项目类别:
CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
- 批准号:
2338857 - 财政年份:2024
- 资助金额:
$ 53.9万 - 项目类别:
Continuing Grant
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 53.9万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 53.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synthetic analogues based on metabolites of omega-3 fatty acids protect mitochondria in aging hearts
基于 omega-3 脂肪酸代谢物的合成类似物可保护衰老心脏中的线粒体
- 批准号:
477891 - 财政年份:2023
- 资助金额:
$ 53.9万 - 项目类别:
Operating Grants
Metabolomic profiles of responders and non-responders to an omega-3 fatty acids supplementation.
对 omega-3 脂肪酸补充剂有反应和无反应者的代谢组学特征。
- 批准号:
495594 - 财政年份:2023
- 资助金额:
$ 53.9万 - 项目类别:
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 53.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrated understanding and manipulation of hypoxic cellular functions by artificial nucleic acids with hypoxia-accumulating properties
具有缺氧累积特性的人工核酸对缺氧细胞功能的综合理解和操纵
- 批准号:
23H02086 - 财政年份:2023
- 资助金额:
$ 53.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 53.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 53.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)