Continuous Compensation of Brain Shift during Neurosurgery
神经外科手术期间脑转移的持续补偿
基本信息
- 批准号:10178011
- 负责人:
- 金额:$ 39.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D ultrasoundAddressAdoptionAlgorithmsBiopsyBrainBrain NeoplasmsBreastCessation of lifeClinicalClinical ResearchComplexComputer GraphicsComputer softwareConsumptionCraniotomyCustomDataDevicesEvolutionExcisionFeedbackFinancial compensationFreedomFunctional ImagingGliomaGoalsHeadHospitalsImageImage-Guided SurgeryKnowledgeLife ExpectancyLiquid substanceLiteratureLiverLocationLungMagnetic Resonance ImagingManualsMathematicsMeasurementMeasuresMedical ImagingMethodsModelingModernizationMonitorNeurologic DeficitNeuronavigationNeurosurgeonOperative Surgical ProceduresPatientsPrimary Brain NeoplasmsPropertyProstateQuality of lifeReportingResearchRiskSamplingSeizuresSideSpeedStructureSurgeonSurgical InstrumentsSurgically-Created Resection CavitySystemTestingTimeTissuesTranslationsTumor TissueUltrasonographyUnited StatesUpdateVisualizationanatomic imagingbrain shapebrain surgerybrain tissueclinical practicecurve fittingdesignfeature detectionimage registrationimaging facilitiesimprovedneurosurgerynovelphysical modelpressurepreventprototypereduce symptomssoft tissuesoftware systemssystems researchtooltumor
项目摘要
Project Summary / Abstract
There are nearly 700,000 people living with primary brain tumors in the United States, with nearly 80,000 new cases and
11,000 deaths expected in 2018. Surgical removal is the first defense against brain tumors because it relieves symptoms,
decreases seizure risks and increases life expectancy. Recent studies have shown that extent of tumor resection is strongly
correlated with both freedom from progression and survival. However, tumors are often situated in and around critical
brain structures and damaging these structures can cause loss of brain function. Thus, the primary goal in brain surgery is
to maximize the extent of tumor resection while minimizing damage to surrounding brain tissue. Commercial
neuronavigation systems present pre-operative image data to the surgeon during surgery that can help them visualize the
location of their surgical instruments relative to these critical structures. Unfortunately, commercial systems do not
compensate for progressive deformation of the brain during surgery, known as brain shift, which can be as large as 1-2
centimeters so the accuracy of neuronavigation systems decreases progressively during surgery.
What is needed is a way to measure and compensate for brain shift continuously during surgery so that surgeons have
timely, up-to-date information about what tissue has been removed, what tissue remains, and where nearby critical brain
structures are. Such a system would enable neurosurgeons to make timely decisions that increase life expectancy and
improve quality-of-life. While there is promising research in modeling brain deformation during surgery and a few end-to-
end research systems that provide brain shift compensation, current approaches have a number of limitations. In
particular, they rely on intraoperative data that is only available at a few time-points during surgery and they require many
minutes of computation before model updates can be presented to the surgeon.
This proposal addresses the three bottlenecks in state-of-the-art brain shift compensation research that prevent its
adoption in clinical practice: 1) current method for modeling brain shift do not directly measure what has been removed
during tumor resection so they tend to be inaccurate at the resection boundary, which is precisely where accuracy is most
needed; 2) algorithms for modeling brain shift require significant preprocessing, computational power, and are too slow
to provide timely feedback to the surgeon; and 3) intraoperative image acquisition is disruptive, time consuming and
expensive so updates are infrequent. In this proposal we will address these bottlenecks by applying algorithms developed
for real-time computer graphics to model the resection cavity and brain shift, and a new device and surgical workflow that
will allow us to collect 3D ultrasound without disrupting surgery so we can monitor brain shift at frequent intervals. This
project will address these bottlenecks with the following specific aims:
Aim 1. Investigate the use of Adaptively Sampled Distance Fields for modeling of tumor resection
Aim 2. Extend and investigate the use of 3D Chainmail for real-time brain shift modeling from intraoperative ultrasound
Aim 3. Demonstrate continuous brain shift monitoring with a new surgical workflow and a prototype intraoperative
ultrasound device
项目总结/摘要
美国有近70万人患有原发性脑瘤,新增病例近8万例,
预计2018年将有1.1万人死亡。手术切除是对抗脑肿瘤的第一道防线,因为它可以缓解症状,
降低癫痫发作的风险并延长预期寿命。最近的研究表明,肿瘤切除的范围是强烈的,
与无进展和生存率相关。然而,肿瘤通常位于关键部位及其周围,
大脑结构和破坏这些结构会导致大脑功能丧失。因此,脑外科手术的主要目标是
以最大限度地切除肿瘤,同时最大限度地减少对周围脑组织的损伤。商业
神经导航系统在手术期间向外科医生呈现术前图像数据,
他们的手术器械相对于这些关键结构的位置。不幸的是,商业系统不
补偿手术过程中大脑的渐进变形,称为大脑移位,可高达1-2
因此神经导航系统的准确性在手术过程中逐渐降低。
需要的是一种在手术期间连续测量和补偿大脑移位的方法,
及时的,最新的信息,关于什么组织已经被移除,什么组织仍然存在,以及附近的关键大脑
结构是。这样的系统将使神经外科医生能够及时做出决定,增加预期寿命,
提高生活质量。虽然在手术过程中对大脑变形建模的研究很有前途,
然而,对于提供脑移位补偿的最终研究系统,当前的方法具有许多限制。在
特别是,它们依赖于术中数据,这些数据仅在手术期间的几个时间点可用,并且它们需要许多
在模型更新之前的几分钟的计算可以呈现给外科医生。
这项提案解决了最先进的大脑转移补偿研究中的三个瓶颈,这些瓶颈阻碍了其
在临床实践中的采用:1)用于模拟脑移位的当前方法不直接测量已经移除的内容
因此它们往往在切除边界处不准确,而切除边界恰恰是准确性最高的地方
需要; 2)用于模拟大脑转移的算法需要大量的预处理,计算能力,并且太慢
向外科医生提供及时的反馈;以及3)术中图像采集是破坏性的、耗时的,
价格昂贵,所以更新不频繁。在本提案中,我们将通过应用开发的算法来解决这些瓶颈
用于实时计算机图形来模拟切除腔和大脑移位,以及一种新的设备和手术工作流程,
将允许我们在不中断手术的情况下收集3D超声,这样我们就可以经常监测大脑的变化。这
该项目将解决这些瓶颈问题,具体目标如下:
目标1.研究使用自适应采样距离场进行肿瘤切除建模
目标二。扩展并研究3D Chainmail在术中超声实时脑移位建模中的应用
目标3。通过新的手术工作流程和术中原型演示连续脑移位监测
超声装置
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SARAH FRISKEN其他文献
SARAH FRISKEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SARAH FRISKEN', 18)}}的其他基金
Ultrasound based neurosurgical navigation with uncertainty visualization
具有不确定性可视化的基于超声的神经外科导航
- 批准号:
10633076 - 财政年份:2022
- 资助金额:
$ 39.47万 - 项目类别:
Ultrasound based neurosurgical navigation with uncertainty visualization
具有不确定性可视化的基于超声的神经外科导航
- 批准号:
10346234 - 财政年份:2022
- 资助金额:
$ 39.47万 - 项目类别:
Continuous Compensation of Brain Shift during Neurosurgery
神经外科手术期间脑转移的持续补偿
- 批准号:
10294312 - 财政年份:2018
- 资助金额:
$ 39.47万 - 项目类别:
相似海外基金
Super-resolution 3D ultrasound tomography for material microstructure characterisation
用于材料微观结构表征的超分辨率 3D 超声断层扫描
- 批准号:
2815310 - 财政年份:2023
- 资助金额:
$ 39.47万 - 项目类别:
Studentship
CAREER: Super-Resolution 3D Ultrasound Imaging of Brain Activity
职业:大脑活动的超分辨率 3D 超声成像
- 批准号:
2237309 - 财政年份:2023
- 资助金额:
$ 39.47万 - 项目类别:
Continuing Grant
PFI-RP: Towards Democratization of Ultrafast 3D Ultrasound Imaging
PFI-RP:迈向超快 3D 超声成像的民主化
- 批准号:
2329865 - 财政年份:2023
- 资助金额:
$ 39.47万 - 项目类别:
Continuing Grant
Machine Learning on 3D Ultrasound Images and Wearable IoT Data for Brace Treatment of Spinal Deformities
基于 3D 超声图像和可穿戴物联网数据的机器学习用于脊柱畸形的支架治疗
- 批准号:
RGPIN-2020-04415 - 财政年份:2022
- 资助金额:
$ 39.47万 - 项目类别:
Discovery Grants Program - Individual
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10708132 - 财政年份:2022
- 资助金额:
$ 39.47万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10587466 - 财政年份:2022
- 资助金额:
$ 39.47万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10670956 - 财政年份:2022
- 资助金额:
$ 39.47万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10509562 - 财政年份:2022
- 资助金额:
$ 39.47万 - 项目类别:
3D Ultrasound Vascular Flow Imaging System
3D超声血管血流成像系统
- 批准号:
547186-2020 - 财政年份:2022
- 资助金额:
$ 39.47万 - 项目类别:
Postgraduate Scholarships - Doctoral
3D ultrasound-based mechatronic guidance system
基于3D超声的机电一体化引导系统
- 批准号:
574470-2022 - 财政年份:2022
- 资助金额:
$ 39.47万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




