Continuous Compensation of Brain Shift during Neurosurgery
神经外科手术期间脑转移的持续补偿
基本信息
- 批准号:10294312
- 负责人:
- 金额:$ 22.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D ultrasoundAddressAdoptionAlgorithmsBiopsyBrainBrain NeoplasmsBreastCessation of lifeClinicalClinical ResearchComplexComputer GraphicsComputer softwareConsumptionCraniotomyCustomDataDevicesEvolutionExcisionFeedbackFinancial compensationFreedomFunctional ImagingGliomaGoalsHeadHospitalsImageImage-Guided SurgeryKnowledgeLife ExpectancyLiquid substanceLiteratureLiverLocationLungMagnetic Resonance ImagingManualsMathematicsMeasurementMeasuresMedical ImagingMethodsModelingModernizationMonitorNeurologic DeficitNeuronavigationNeurosurgeonOperative Surgical ProceduresPatientsPrimary Brain NeoplasmsPropertyProstateQuality of lifeReportingResearchRiskSamplingSeizuresSideSpeedStructureSurgeonSurgical InstrumentsSurgically-Created Resection CavitySystemTestingTimeTissuesTranslationsTumor TissueUltrasonographyUnited StatesUpdateVisualizationanatomic imagingbrain shapebrain surgerybrain tissueclinical practicecurve fittingdesignfeature detectionimage registrationimaging facilitiesimprovedneurosurgerynovelphysical modelpressurepreventprototypereduce symptomssoft tissuesoftware systemssystems researchtooltumor
项目摘要
Project Summary / Abstract
There are nearly 700,000 people living with primary brain tumors in the United States, with nearly 80,000 new cases and
11,000 deaths expected in 2018. Surgical removal is the first defense against brain tumors because it relieves symptoms,
decreases seizure risks and increases life expectancy. Recent studies have shown that extent of tumor resection is strongly
correlated with both freedom from progression and survival. However, tumors are often situated in and around critical
brain structures and damaging these structures can cause loss of brain function. Thus, the primary goal in brain surgery is
to maximize the extent of tumor resection while minimizing damage to surrounding brain tissue. Commercial
neuronavigation systems present pre-operative image data to the surgeon during surgery that can help them visualize the
location of their surgical instruments relative to these critical structures. Unfortunately, commercial systems do not
compensate for progressive deformation of the brain during surgery, known as brain shift, which can be as large as 1-2
centimeters so the accuracy of neuronavigation systems decreases progressively during surgery.
What is needed is a way to measure and compensate for brain shift continuously during surgery so that surgeons have
timely, up-to-date information about what tissue has been removed, what tissue remains, and where nearby critical brain
structures are. Such a system would enable neurosurgeons to make timely decisions that increase life expectancy and
improve quality-of-life. While there is promising research in modeling brain deformation during surgery and a few end-to-
end research systems that provide brain shift compensation, current approaches have a number of limitations. In
particular, they rely on intraoperative data that is only available at a few time-points during surgery and they require many
minutes of computation before model updates can be presented to the surgeon.
This proposal addresses the three bottlenecks in state-of-the-art brain shift compensation research that prevent its
adoption in clinical practice: 1) current method for modeling brain shift do not directly measure what has been removed
during tumor resection so they tend to be inaccurate at the resection boundary, which is precisely where accuracy is most
needed; 2) algorithms for modeling brain shift require significant preprocessing, computational power, and are too slow
to provide timely feedback to the surgeon; and 3) intraoperative image acquisition is disruptive, time consuming and
expensive so updates are infrequent. In this proposal we will address these bottlenecks by applying algorithms developed
for real-time computer graphics to model the resection cavity and brain shift, and a new device and surgical workflow that
will allow us to collect 3D ultrasound without disrupting surgery so we can monitor brain shift at frequent intervals. This
project will address these bottlenecks with the following specific aims:
Aim 1. Investigate the use of Adaptively Sampled Distance Fields for modeling of tumor resection
Aim 2. Extend and investigate the use of 3D Chainmail for real-time brain shift modeling from intraoperative ultrasound
Aim 3. Demonstrate continuous brain shift monitoring with a new surgical workflow and a prototype intraoperative
ultrasound device
项目摘要/摘要
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SurfaceNets for Multi-Label Segmentations with Preservation of Sharp Boundaries.
用于多标签分割并保留清晰边界的 SurfaceNet。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Frisken,SarahF
- 通讯作者:Frisken,SarahF
Mapping Resection Progress by Tool-Tip Tracking during Brain Tumor Surgery for Real-Time Estimation of Residual Tumor.
- DOI:10.3390/cancers15030825
- 发表时间:2023-01-29
- 期刊:
- 影响因子:5.2
- 作者:
- 通讯作者:
Alignment of Cortical Vessels viewed through the Surgical Microscope with Preoperative Imaging to Compensate for Brain Shift.
通过手术显微镜观察皮质血管与术前成像的对齐,以补偿大脑移位。
- DOI:10.1117/12.2547620
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Haouchine,Nazim;Juvekar,Parikshit;Golby,Alexandra;Wells3rd,WilliamM;Cotin,Stephane;Frisken,Sarah
- 通讯作者:Frisken,Sarah
Novice-performed point-of-care ultrasound for home-based imaging.
- DOI:10.1038/s41598-022-24513-x
- 发表时间:2022-11-28
- 期刊:
- 影响因子:4.6
- 作者:Duggan, Nicole M.;Jowkar, Nick;Ma, Irene W. Y.;Schulwolf, Sara;Selame, Lauren A.;Fischetti, Chanel E.;Kapur, Tina;Goldsmith, Andrew J.
- 通讯作者:Goldsmith, Andrew J.
Automatic framework for patient-specific modelling of tumour resection-induced brain shift.
- DOI:10.1016/j.compbiomed.2022.105271
- 发表时间:2022-04
- 期刊:
- 影响因子:7.7
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SARAH FRISKEN其他文献
SARAH FRISKEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SARAH FRISKEN', 18)}}的其他基金
Ultrasound based neurosurgical navigation with uncertainty visualization
具有不确定性可视化的基于超声的神经外科导航
- 批准号:
10633076 - 财政年份:2022
- 资助金额:
$ 22.39万 - 项目类别:
Ultrasound based neurosurgical navigation with uncertainty visualization
具有不确定性可视化的基于超声的神经外科导航
- 批准号:
10346234 - 财政年份:2022
- 资助金额:
$ 22.39万 - 项目类别:
Continuous Compensation of Brain Shift during Neurosurgery
神经外科手术期间脑转移的持续补偿
- 批准号:
10178011 - 财政年份:2018
- 资助金额:
$ 22.39万 - 项目类别:
相似海外基金
CAREER: Super-Resolution 3D Ultrasound Imaging of Brain Activity
职业:大脑活动的超分辨率 3D 超声成像
- 批准号:
2237309 - 财政年份:2023
- 资助金额:
$ 22.39万 - 项目类别:
Continuing Grant
Super-resolution 3D ultrasound tomography for material microstructure characterisation
用于材料微观结构表征的超分辨率 3D 超声断层扫描
- 批准号:
2815310 - 财政年份:2023
- 资助金额:
$ 22.39万 - 项目类别:
Studentship
PFI-RP: Towards Democratization of Ultrafast 3D Ultrasound Imaging
PFI-RP:迈向超快 3D 超声成像的民主化
- 批准号:
2329865 - 财政年份:2023
- 资助金额:
$ 22.39万 - 项目类别:
Continuing Grant
Machine Learning on 3D Ultrasound Images and Wearable IoT Data for Brace Treatment of Spinal Deformities
基于 3D 超声图像和可穿戴物联网数据的机器学习用于脊柱畸形的支架治疗
- 批准号:
RGPIN-2020-04415 - 财政年份:2022
- 资助金额:
$ 22.39万 - 项目类别:
Discovery Grants Program - Individual
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10708132 - 财政年份:2022
- 资助金额:
$ 22.39万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10587466 - 财政年份:2022
- 资助金额:
$ 22.39万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10670956 - 财政年份:2022
- 资助金额:
$ 22.39万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10509562 - 财政年份:2022
- 资助金额:
$ 22.39万 - 项目类别:
3D Ultrasound Vascular Flow Imaging System
3D超声血管血流成像系统
- 批准号:
547186-2020 - 财政年份:2022
- 资助金额:
$ 22.39万 - 项目类别:
Postgraduate Scholarships - Doctoral
3D ultrasound-based mechatronic guidance system
基于3D超声的机电一体化引导系统
- 批准号:
574470-2022 - 财政年份:2022
- 资助金额:
$ 22.39万 - 项目类别:
University Undergraduate Student Research Awards