Patient-Generated Health Data to Predict Childhood Cancer Survivorship Outcomes
患者生成的健康数据可预测儿童癌症生存结果
基本信息
- 批准号:10178979
- 负责人:
- 金额:$ 74.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-05 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:18 year oldAccelerometerAdultAgeApplications GrantsAttentionBehavioralBehavioral GeneticsBiometryCancer SurvivorshipCaringCellular PhoneCessation of lifeChronicClinicalClinical ManagementCohort StudiesConsultationsDataData CollectionDevicesDiagnosisDoseEarly InterventionElectronic Health RecordEmergency department visitEnergy MetabolismEnrollmentEnvironmentEvaluationFingersFutureGoalsHealthHealth behaviorHospitalizationHospitalsIncomeInterventionLate EffectsLinkMalignant Childhood NeoplasmMalignant NeoplasmsMeasuresMedicalModelingMonitorOutcomePatient MonitoringPatient Outcomes AssessmentsPatientsPatternPerformancePhysical PerformancePhysical activityPilot ProjectsPopulationPreventionPrimary Health CareProcessQualitative MethodsQuality of lifeReportingRiskRisk FactorsRisk ManagementSaint Jude Children&aposs Research HospitalSeriesSeveritiesSpecific qualifier valueSurvivorsSymptomsTechniquesTestingTrainingValidationWristactigraphyadverse event riskadverse outcomeassociated symptombehavioral healthcancer diagnosiscancer therapycancer typecare outcomescare providerschildhood cancer survivorcohortcommon symptomdashboardhealth care service utilizationhealth dataheart rate variabilityimprovedlearning strategymHealthoutcome predictionpatient portalpatient variabilitypersonalized risk predictionprematurepreventive interventionrisk predictionrisk prediction modelsensorsexsleep behaviorsociodemographic factorssociodemographicsstatistical and machine learningsupport toolssurvivorshiptooluser-friendlyweb-based tool
项目摘要
PROJECT SUMMARY/ABSTRACT
There are approximately 500,000 childhood cancer survivors in the U.S. today. Childhood cancer
survivors are vulnerable to late effects of therapy including chronic health conditions and premature death.
Predicting survivor-specific risk of late effects, discussing how to manage these risks, and offering early
preventions and interventions are critical components of survivorship care. Over 75% of childhood cancer
survivors have prevalent symptoms, and constantly poor or worsening symptoms are associated with onset of
medical late effects. However, regular symptom monitoring is uncommon in survivorship or primary care. The
core concept of this R01 grant proposal is to enable regular monitoring of patient-generated health data (PGHD),
including symptoms, physical activity, energy expenditure, sleep behavior and heart rate variability, and utilize
these data in predicting survivor-specific risk of late effects to improve survivorship care and outcomes.
The proposed application will enroll 620 adult survivors of childhood cancer from the St. Jude Lifetime
Cohort Study who are ≥5 years post diagnosis and currently ≥18 years of age at enrollment to achieve the
following 3 specific aims: Aim 1) use a mobile health platform to collect dynamic PGHD data over 3 months and
use them to develop and validate risk prediction models for future quality-of-life (QOL); Aim 2) develop/validate
risk prediction models and establish personalized risk prediction scores for other outcomes (unplanned care
utilization, physical performance deficits, onset of chronic health conditions) using the same approach as Aim 1;
and Aim 3) create a web-based tool to calculate and report personalized outcome-specific risks, and facilitate
integration of risk scores into the survivor’s patient portal and hospital’s Electronic Health Record (EHR).
We have a series of preliminary data to support this R01 grant proposal: a) in a pilot study assessing 20
common symptoms with a mobile health platform, childhood cancer survivors completed 90% of all required
evaluations over 3 months; and b) in a prediction analysis from ongoing cohort of childhood cancer survivors,
the inclusion of longitudinal symptom data generated a superior model performance in predicting future QOL
(prediction measure, AUC=0.85) compared to the use of only age, sex, and childhood cancer type (AUC=0.63).
Linking through a mobile health platform, we will use a smartphone to collect symptom data, a wrist-worn
accelerometer to collect momentary activity/behavioral data, and a finger sensor to collect heart rate variability
data. We will predict patient-reported outcomes (poor QOL, unplanned healthcare utilization) and clinically-
assessed outcomes (physical performance deficits, onset of chronic health conditions) on the 12th and 24th
months after collecting risk factors. We will apply state-of-the-art machine/statistical learning techniques to
capture features of dynamic changes in PGHD to predict these outcomes. We will build a Central Cancer
Survivorship Platform to integrate predicted risks presented with interpretable scores into a patient portal and
EHR, and to inform clinicians and survivors about potential adverse-event risks for risk management/intervention.
项目摘要/摘要
今天,美国大约有50万儿童癌症幸存者。儿童期癌症
幸存者很容易受到治疗的后期影响,包括慢性健康状况和过早死亡。
预测特定于幸存者的晚期效应风险,讨论如何管理这些风险,并及早提供
预防和干预是生存护理的关键组成部分。超过75%的儿童癌症
幸存者有普遍的症状,持续较差或恶化的症状与
医学后遗症。然而,定期的症状监测在生存或初级保健中并不常见。这个
这项R01拨款提案的核心概念是实现对患者生成的健康数据(PGHD)的定期监测,
包括症状、体力活动、能量消耗、睡眠行为和心率变异性,并利用
这些数据有助于预测特定于幸存者的远期风险,以改善生存护理和预后。
这项拟议的申请将从圣犹大终身医院招募620名儿童癌症成年幸存者
队列研究谁是≥诊断后5年,目前在注册时≥18岁,实现
以下3个具体目标:目标1)使用移动健康平台收集3个月内的动态PGHD数据,并
使用它们开发和验证未来生活质量(QOL)的风险预测模型;目标2)开发/验证
风险预测模型,并为其他结果(计划外护理)建立个性化风险预测分数
使用与目标1相同的方法(使用、体能缺陷、出现慢性健康状况);
和目标3)创建一个基于网络的工具,以计算和报告个性化的结果特定风险,并促进
将风险评分整合到幸存者的患者门户和医院的电子健康记录(EHR)中。
我们有一系列初步数据支持这项R01赠款提案:a)在一项评估20
常见症状与移动健康平台,儿童癌症幸存者完成了所有要求的90%
超过3个月的评估;以及b)在对儿童癌症幸存者队列的预测分析中,
纳入纵向症状数据在预测未来生活质量方面产生了更好的模型性能
(预测指标,AUC=0.85)与仅使用年龄、性别和儿童癌症类型(AUC=0.63)进行比较。
通过移动健康平台连接,我们将使用智能手机收集症状数据,手腕佩戴
用于收集瞬时活动/行为数据的加速计,以及用于收集心率变异性的手指传感器
数据。我们将预测患者报告的结果(较差的QOL,计划外的医疗保健利用率)和临床-
12日和24日的评估结果(体能缺陷、慢性健康状况的发病)
在收集风险因素几个月后。我们将应用最先进的机器/统计学习技术来
捕捉PGHD动态变化的特征以预测这些结果。我们将打造一个中心癌症
生存平台,将具有可解释分数的预测风险集成到患者门户中,并
EHR,并告知临床医生和幸存者潜在的不良事件风险,以进行风险管理/干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
I-Chan Huang其他文献
I-Chan Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('I-Chan Huang', 18)}}的其他基金
Patient-Generated Health Data to Predict Childhood Cancer Survivorship Outcomes
患者生成的健康数据可预测儿童癌症生存结果
- 批准号:
10445095 - 财政年份:2021
- 资助金额:
$ 74.28万 - 项目类别:
Symptom progress and adverse health outcomes in adult childhood cancer survivors
成年儿童癌症幸存者的症状进展和不良健康结果
- 批准号:
9024265 - 财政年份:2015
- 资助金额:
$ 74.28万 - 项目类别:
Using Item Response Theory to Improve Children's Quality of Life Assessment
利用项目反应理论改善儿童的生活质量评估
- 批准号:
7913077 - 财政年份:2009
- 资助金额:
$ 74.28万 - 项目类别:
Using Item Response Theory to Improve Children's Quality of Life Assessment
利用项目反应理论改善儿童的生活质量评估
- 批准号:
7660615 - 财政年份:2009
- 资助金额:
$ 74.28万 - 项目类别:
Using Item Response Theory to Improve Children's Quality of Life Assessment
利用项目反应理论改善儿童的生活质量评估
- 批准号:
8137639 - 财政年份:2009
- 资助金额:
$ 74.28万 - 项目类别:
相似海外基金
Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
- 批准号:
10731315 - 财政年份:2023
- 资助金额:
$ 74.28万 - 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
- 批准号:
10727374 - 财政年份:2023
- 资助金额:
$ 74.28万 - 项目类别:
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
- 批准号:
566730-2021 - 财政年份:2022
- 资助金额:
$ 74.28万 - 项目类别:
Alliance Grants
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10444075 - 财政年份:2022
- 资助金额:
$ 74.28万 - 项目类别:
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10617774 - 财政年份:2022
- 资助金额:
$ 74.28万 - 项目类别:
Exploration of novel pathophysiology of chemotherapy-induced peripheral neuropathy utilizing quantitative sensory testing and accelerometer
利用定量感觉测试和加速度计探索化疗引起的周围神经病变的新病理生理学
- 批准号:
22K17623 - 财政年份:2022
- 资助金额:
$ 74.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating the validity and reliability of accelerometer-based measures of physical activity and sedentary time in toddlers (iPLAY)
研究基于加速度计的幼儿体力活动和久坐时间测量的有效性和可靠性 (iPLAY)
- 批准号:
475451 - 财政年份:2022
- 资助金额:
$ 74.28万 - 项目类别:
Studentship Programs
Doctoral Dissertation Research: Leveraging Intensive Time Series of Accelerometer Data to Assess Impulsivity and Inattention in Preschool Children
博士论文研究:利用加速计数据的密集时间序列来评估学龄前儿童的冲动和注意力不集中
- 批准号:
2120223 - 财政年份:2021
- 资助金额:
$ 74.28万 - 项目类别:
Standard Grant
Investigating the reliability of accelerometer-based measures of physical activity and sedentary time in toddlers
研究基于加速度计的幼儿体力活动和久坐时间测量的可靠性
- 批准号:
466914 - 财政年份:2021
- 资助金额:
$ 74.28万 - 项目类别:
Studentship Programs
Development of a rotation-invariant accelerometer for human activity recognition
开发用于人类活动识别的旋转不变加速度计
- 批准号:
21K19804 - 财政年份:2021
- 资助金额:
$ 74.28万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)