Patient-Generated Health Data to Predict Childhood Cancer Survivorship Outcomes
患者生成的健康数据可预测儿童癌症生存结果
基本信息
- 批准号:10445095
- 负责人:
- 金额:$ 72.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-05 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:18 year oldAccelerometerAdultAgeApplications GrantsAttentionBehavioralBiometryCancer SurvivorshipCaringCellular PhoneCessation of lifeChronicClinicalClinical ManagementClinical assessmentsCohort StudiesConsultationsDataData CollectionDevicesDiagnosisDoseEarly InterventionEducationElectronic Health RecordEligibility DeterminationEmergency department visitEnergy MetabolismEnrollmentEnvironmentEvaluationFingersFutureGeneticGoalsHealthHealth behaviorHospitalizationHospitalsIncomeInterventionLate EffectsLinkMalignant Childhood NeoplasmMalignant NeoplasmsMeasuresMedicalModelingMonitorOutcomePatient MonitoringPatient Outcomes AssessmentsPatientsPatternPerformancePhysical PerformancePhysical activityPilot ProjectsPopulationPreventionPrimary CareProcessQualitative MethodsQuality of lifeReportingRiskRisk FactorsRisk ManagementSaint Jude Children&aposs Research HospitalSeriesSeveritiesSpecific qualifier valueSurvivorsSymptomsTechniquesTestingTrainingValidationWristactigraphyadverse event riskadverse outcomeassociated symptombehavioral healthcancer diagnosiscancer therapycancer typecare providerschildhood cancer survivorclinical outcome assessmentcohortcommon symptomdashboardhealth care service utilizationhealth dataheart rate variabilityimprovedlearning strategymHealthoutcome predictionpatient portalpatient variabilitypersonalized risk predictionpredictive toolsprematurepreventive interventionrisk predictionrisk prediction modelsensorsexsleep behaviorsociodemographic factorssociodemographicsstatistical learningsupport toolssurvivorshipuser-friendlyweb-based tool
项目摘要
PROJECT SUMMARY/ABSTRACT
There are approximately 500,000 childhood cancer survivors in the U.S. today. Childhood cancer
survivors are vulnerable to late effects of therapy including chronic health conditions and premature death.
Predicting survivor-specific risk of late effects, discussing how to manage these risks, and offering early
preventions and interventions are critical components of survivorship care. Over 75% of childhood cancer
survivors have prevalent symptoms, and constantly poor or worsening symptoms are associated with onset of
medical late effects. However, regular symptom monitoring is uncommon in survivorship or primary care. The
core concept of this R01 grant proposal is to enable regular monitoring of patient-generated health data (PGHD),
including symptoms, physical activity, energy expenditure, sleep behavior and heart rate variability, and utilize
these data in predicting survivor-specific risk of late effects to improve survivorship care and outcomes.
The proposed application will enroll 620 adult survivors of childhood cancer from the St. Jude Lifetime
Cohort Study who are ≥5 years post diagnosis and currently ≥18 years of age at enrollment to achieve the
following 3 specific aims: Aim 1) use a mobile health platform to collect dynamic PGHD data over 3 months and
use them to develop and validate risk prediction models for future quality-of-life (QOL); Aim 2) develop/validate
risk prediction models and establish personalized risk prediction scores for other outcomes (unplanned care
utilization, physical performance deficits, onset of chronic health conditions) using the same approach as Aim 1;
and Aim 3) create a web-based tool to calculate and report personalized outcome-specific risks, and facilitate
integration of risk scores into the survivor’s patient portal and hospital’s Electronic Health Record (EHR).
We have a series of preliminary data to support this R01 grant proposal: a) in a pilot study assessing 20
common symptoms with a mobile health platform, childhood cancer survivors completed 90% of all required
evaluations over 3 months; and b) in a prediction analysis from ongoing cohort of childhood cancer survivors,
the inclusion of longitudinal symptom data generated a superior model performance in predicting future QOL
(prediction measure, AUC=0.85) compared to the use of only age, sex, and childhood cancer type (AUC=0.63).
Linking through a mobile health platform, we will use a smartphone to collect symptom data, a wrist-worn
accelerometer to collect momentary activity/behavioral data, and a finger sensor to collect heart rate variability
data. We will predict patient-reported outcomes (poor QOL, unplanned healthcare utilization) and clinically-
assessed outcomes (physical performance deficits, onset of chronic health conditions) on the 12th and 24th
months after collecting risk factors. We will apply state-of-the-art machine/statistical learning techniques to
capture features of dynamic changes in PGHD to predict these outcomes. We will build a Central Cancer
Survivorship Platform to integrate predicted risks presented with interpretable scores into a patient portal and
EHR, and to inform clinicians and survivors about potential adverse-event risks for risk management/intervention.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
I-Chan Huang其他文献
I-Chan Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('I-Chan Huang', 18)}}的其他基金
Patient-Generated Health Data to Predict Childhood Cancer Survivorship Outcomes
患者生成的健康数据可预测儿童癌症生存结果
- 批准号:
10178979 - 财政年份:2021
- 资助金额:
$ 72.74万 - 项目类别:
Symptom progress and adverse health outcomes in adult childhood cancer survivors
成年儿童癌症幸存者的症状进展和不良健康结果
- 批准号:
9024265 - 财政年份:2015
- 资助金额:
$ 72.74万 - 项目类别:
Using Item Response Theory to Improve Children's Quality of Life Assessment
利用项目反应理论改善儿童的生活质量评估
- 批准号:
7913077 - 财政年份:2009
- 资助金额:
$ 72.74万 - 项目类别:
Using Item Response Theory to Improve Children's Quality of Life Assessment
利用项目反应理论改善儿童的生活质量评估
- 批准号:
7660615 - 财政年份:2009
- 资助金额:
$ 72.74万 - 项目类别:
Using Item Response Theory to Improve Children's Quality of Life Assessment
利用项目反应理论改善儿童的生活质量评估
- 批准号:
8137639 - 财政年份:2009
- 资助金额:
$ 72.74万 - 项目类别:
相似海外基金
Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
- 批准号:
10731315 - 财政年份:2023
- 资助金额:
$ 72.74万 - 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
- 批准号:
10727374 - 财政年份:2023
- 资助金额:
$ 72.74万 - 项目类别:
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
- 批准号:
566730-2021 - 财政年份:2022
- 资助金额:
$ 72.74万 - 项目类别:
Alliance Grants
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10444075 - 财政年份:2022
- 资助金额:
$ 72.74万 - 项目类别:
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10617774 - 财政年份:2022
- 资助金额:
$ 72.74万 - 项目类别:
Investigating the validity and reliability of accelerometer-based measures of physical activity and sedentary time in toddlers (iPLAY)
研究基于加速度计的幼儿体力活动和久坐时间测量的有效性和可靠性 (iPLAY)
- 批准号:
475451 - 财政年份:2022
- 资助金额:
$ 72.74万 - 项目类别:
Studentship Programs
Exploration of novel pathophysiology of chemotherapy-induced peripheral neuropathy utilizing quantitative sensory testing and accelerometer
利用定量感觉测试和加速度计探索化疗引起的周围神经病变的新病理生理学
- 批准号:
22K17623 - 财政年份:2022
- 资助金额:
$ 72.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating the reliability of accelerometer-based measures of physical activity and sedentary time in toddlers
研究基于加速度计的幼儿体力活动和久坐时间测量的可靠性
- 批准号:
466914 - 财政年份:2021
- 资助金额:
$ 72.74万 - 项目类别:
Studentship Programs
Doctoral Dissertation Research: Leveraging Intensive Time Series of Accelerometer Data to Assess Impulsivity and Inattention in Preschool Children
博士论文研究:利用加速计数据的密集时间序列来评估学龄前儿童的冲动和注意力不集中
- 批准号:
2120223 - 财政年份:2021
- 资助金额:
$ 72.74万 - 项目类别:
Standard Grant
Development of a rotation-invariant accelerometer for human activity recognition
开发用于人类活动识别的旋转不变加速度计
- 批准号:
21K19804 - 财政年份:2021
- 资助金额:
$ 72.74万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




