Extraction of Symptom Burden from Clinical Narratives of Cancer Patients using Natural Language Processing
使用自然语言处理从癌症患者的临床叙述中提取症状负担
基本信息
- 批准号:10179677
- 负责人:
- 金额:$ 44.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-19 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Active LearningAddressAdoptionAdverse effectsAffectAnatomyAnxietyCancer BurdenCancer PatientCaringCessation of lifeCharacteristicsClinicalCommunitiesDataData SetDecision Support SystemsDesire for foodDiagnosisDiseaseDocumentationDrowsinessElectronic Health RecordEngineeringEvaluationFrequenciesFundingFutureGoalsGoldGrainHospitalsImpairmentInformation RetrievalInstitutesInstitutionInterventionLocationMalignant NeoplasmsMalignant neoplasm of prostateMethodsModelingNatural Language ProcessingNatureNauseaOncologyOutcomeOutpatientsPainPalliative CarePatientsPerformancePhysiciansPractice GuidelinesPreventionProfessional OrganizationsProviderPublicationsQuality of lifeRecordsReportingResourcesSemanticsServicesSeveritiesShortness of BreathSpecialistStructureSupervisionSupportive careSymptomsSystemTechnologyTestingTimeTrainingUtahVisitWashingtonWell in selfWorkbasecancer carecancer complicationcancer therapycancer typecare systemscohortcost effectivenessdeep learningexperiencefield studyimplementation barriersimprovedinnovationinstrumentlarge cell Diffuse non-Hodgkin&aposs lymphomalearning strategymultidisciplinarynoveloncology serviceopen sourcepatient health informationrelating to nervous systemrepositorysymptom managementsymptomatic improvement
项目摘要
Project Summary / Abstract
Cancer patients frequently experience high levels of pain, tiredness, shortness of breath, decreased appetite,
nausea, drowsiness, anxiety, and decreased sense of wellbeing, often related to the disease itself, its
treatments, or both. This high symptom burden leads to significant impairment of cancer patients’ quality of life
and may be associated with impaired survival. Optimal symptom management is required to minimize
symptom burden and maximize quality of life for cancer patients throughout the course of their disease.
Supportive care in cancer (SCC) teams are multidisciplinary teams that are focused on the prevention and
management of the adverse effects of cancer and its treatments across the continuum of the cancer
experience from diagnosis through treatment and beyond. These teams typically lack the resources to see all
cancer patients and need to prioritize patients with the highest need, often relying on oncology physicians for
referral. However, oncology physicians are often too focused on curing cancer than treating its symptoms. As a
result, SCC services are often accessed by chance even when available, often later in the cancer trajectory. To
improve recognition of SCC needs and to identify the symptom burden of cancer patients for better
management and care, we propose to build natural language processing (NLP) approaches that can
automatically extract symptom information from unstructured narratives. The proposed systems will utilize
neural nets and build on the state of the art information extraction methods. To accomplish our goals, we will
create a dataset of clinical notes for a large cohort of prostate cancer and Diffuse Large B Cell Lymphoma
(DLBCL) patients treated in Seattle Cancer Care Alliance (SCCA) and Huntsman Cancer Institute (HCI)
between 1.1.2015 and 1.1.2020. We focus on these two types of cancer as examples of two very different and
prevalent cancer types. We propose to represent symptom burden documented in clinical narratives with a
generalizable frame representation that captures fine-grained details including presence/absence, change-of-
state, severity, characteristics, duration, frequency, and anatomy information related to patient symptoms. We
will use active learning to create a diverse and representative gold standard annotated with symptom frames to
train and test the proposed neural-based NLP approaches. All models and their implementations produced
during the execution of this project will be shared with the community as open source resources. After
successful completion of the project, the developed NLP methods will be integrated into the information access
methods of SCCA and HCI clinical repositories.
项目总结/摘要
癌症患者经常经历高水平的疼痛、疲劳、呼吸急促、食欲下降,
恶心、嗜睡、焦虑和幸福感下降,通常与疾病本身有关,
治疗,或两者。这种高症状负担导致癌症患者的生活质量显著受损
并且可能与受损的存活有关。需要最佳的症状管理,
在癌症患者的整个疾病过程中,减轻症状负担并最大限度地提高生活质量。
癌症支持性治疗(SCC)团队是多学科团队,专注于预防和治疗癌症。
管理癌症的不利影响及其在癌症连续体中的治疗
从诊断到治疗的经验。这些团队通常缺乏资源来查看所有
癌症患者,需要优先考虑最需要的患者,通常依赖肿瘤医生,
转介。然而,肿瘤科医生往往过于专注于治愈癌症,而不是治疗其症状。作为
因此,SCC服务通常是偶然获得的,即使在可用的情况下,通常在癌症轨迹的后期。到
提高对SCC需求的认识,并确定癌症患者的症状负担,
管理和护理,我们建议建立自然语言处理(NLP)方法,可以
自动从非结构化叙述中提取症状信息。拟议的系统将利用
神经网络和建立在最先进的信息提取方法。为了实现我们的目标,我们将
创建前列腺癌和弥漫性大B细胞淋巴瘤大型队列的临床记录数据集
在西雅图癌症护理联盟(SCCA)和亨斯迈癌症研究所(HCI)接受治疗的DLBCL患者
2015年1月1日至2020年1月1日之间。我们把这两种类型的癌症作为两种非常不同的例子,
常见的癌症类型我们建议用临床叙述中记录的症状负担来表示,
可概括的帧表示,捕获细粒度的细节,包括存在/不存在,
与患者症状相关的状态、严重程度、特征、持续时间、频率和解剖结构信息。我们
将使用主动学习来创建一个具有症状框架注释的多样化和代表性的黄金标准,
训练和测试所提出的基于神经的NLP方法。生成的所有模型及其实现
在这个项目的执行过程中,将作为开源资源与社区共享。后
项目的成功完成,开发的NLP方法将被集成到信息访问中
SCCA和HCI临床储存库的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meliha Yetisgen其他文献
Meliha Yetisgen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meliha Yetisgen', 18)}}的其他基金
Extraction of Symptom Burden from Clinical Narratives of Cancer Patients using Natural Language Processing
使用自然语言处理从癌症患者的临床叙述中提取症状负担
- 批准号:
10591957 - 财政年份:2022
- 资助金额:
$ 44.45万 - 项目类别:
Using NLP to Extract Clinically Important Recommendations from Radiology Reports
使用 NLP 从放射学报告中提取临床上重要的建议
- 批准号:
8635902 - 财政年份:2014
- 资助金额:
$ 44.45万 - 项目类别:
Using NLP to Extract Clinically Important Recommendations from Radiology Reports
使用 NLP 从放射学报告中提取临床上重要的建议
- 批准号:
8804856 - 财政年份:2014
- 资助金额:
$ 44.45万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 44.45万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 44.45万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 44.45万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 44.45万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 44.45万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 44.45万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 44.45万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 44.45万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 44.45万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 44.45万 - 项目类别:
Research Grant