Using NLP to Extract Clinically Important Recommendations from Radiology Reports
使用 NLP 从放射学报告中提取临床上重要的建议
基本信息
- 批准号:8804856
- 负责人:
- 金额:$ 21.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-03-01 至 2017-02-28
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAddressAdoptedCharacteristicsClinicalCommunicationCommunitiesComputerized Medical RecordData SetDependencyDiagnosticDiagnostic radiologic examinationEnsureFundingFutureGoalsGoldGrowthGuidelinesHandHealthImageImaging technologyIncidental FindingsInstitutionInterventionInvestigationKnowledgeLifeLung noduleMagnetic Resonance ImagingMalignant NeoplasmsMeasuresMedical centerMethodsModalityNatural Language ProcessingOutcomeOutputPatient CarePatientsPersonsProcessProviderQuality of CareRadiology SpecialtyRecommendationReportingResearchResearch InfrastructureResearch Project GrantsRiskSafetySemanticsShapesSocietiesSpecific qualifier valueSpeechSystemTelephoneTest ResultTestingTextTimeTrainingTraumaUltrasonographyUnified Medical Language SystemWashingtonWritingX-Ray Computed Tomographybiomedical informaticscancer carecare deliverydesignfallsfollow-uphealth care deliveryimaging modalityimprovedinnovationnovelopen sourcephrasespublic health relevanceradiologistscreeningsyntaxtool
项目摘要
Abstract
Communication of clinically important follow-up recommendations when abnormalities are identified on
imaging studies is prone to error. The absence of an automated system to identify and track radiology follow-up
recommendations is an important barrier to ensuring timely follow-up of patients, especially for non-acute but
potentially life threatening and unexpected findings. The primary goal of this proposal is to develop a Natural
Language Processing (NLP) system to extract clinically important recommendation information from free-text
radiology reports. Each radiology report will be preprocessed at the structural, syntactic, and semantic level to
generate features that will be used to extract the boundaries of sentences that include recommendation
information as well as the details of reason for recommendation, requested imaging test, and recommendation
time frame. We will use a large corpus of free-text radiology reports represented by a mixture of modalities
(e.g., radiography, computed tomography, ultrasound, and magnetic resonance imaging (MRI)) from three
different institutions. Using this dataset we will perform the following specific aims: Aim 1. Create a multi-
institutional radiology report corpus annotated for clinically important recommendation information; Aim 2.
Develop a novel NLP system to extract clinically important recommendations in radiology reports. The
proposed research is innovative because it will generate a new text processing approach that can be used to flag
reports visually and electronically so that separate workflow processes can be initiated to reduce the chance
that necessary investigations or interventions suggested in the report are missed by clinicians. The proposed
set of tools will be disseminated to the biomedical informatics community as open source tools.
摘要
当发现异常时,传达具有临床意义的随访建议
成像研究容易出错。缺乏识别和跟踪放射学随访的自动化系统
建议是确保及时随访患者的重要障碍,特别是对于非急性但
可能危及生命和意外发现。该提案的主要目标是开发一种自然的
语言处理(NLP)系统,从自由文本中提取临床重要的推荐信息
放射学报告。每份放射学报告将在结构、句法和语义层面进行预处理,
生成将用于提取包含推荐的句子的边界的特征
信息以及推荐原因、要求的成像检查和推荐的详细信息
时间框架。我们将使用大量的自由文本放射学报告语料库,这些报告由多种形式的混合物表示
(e.g., X射线照相术、计算机断层扫描、超声和磁共振成像(MRI)),
不同的机构。使用这个数据集,我们将执行以下具体目标:目标1。创建多个
注释临床重要推荐信息的机构放射学报告语料库;目标2。
开发一个新的NLP系统,以提取放射学报告中的临床重要建议。的
拟议的研究是创新的,因为它将产生一种新的文本处理方法,可用于标记
以视觉和电子方式报告,以便可以启动单独的工作流程,
报告中建议的必要调查或干预措施被临床医生错过。拟议
一套工具将作为开放源码工具分发给生物医学信息学界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meliha Yetisgen其他文献
Meliha Yetisgen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meliha Yetisgen', 18)}}的其他基金
Extraction of Symptom Burden from Clinical Narratives of Cancer Patients using Natural Language Processing
使用自然语言处理从癌症患者的临床叙述中提取症状负担
- 批准号:
10591957 - 财政年份:2022
- 资助金额:
$ 21.75万 - 项目类别:
Extraction of Symptom Burden from Clinical Narratives of Cancer Patients using Natural Language Processing
使用自然语言处理从癌症患者的临床叙述中提取症状负担
- 批准号:
10179677 - 财政年份:2021
- 资助金额:
$ 21.75万 - 项目类别:
Using NLP to Extract Clinically Important Recommendations from Radiology Reports
使用 NLP 从放射学报告中提取临床上重要的建议
- 批准号:
8635902 - 财政年份:2014
- 资助金额:
$ 21.75万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 21.75万 - 项目类别:
Research Grant