Extraction of Symptom Burden from Clinical Narratives of Cancer Patients using Natural Language Processing
使用自然语言处理从癌症患者的临床叙述中提取症状负担
基本信息
- 批准号:10591957
- 负责人:
- 金额:$ 27.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Active LearningAddressAdministrative SupplementAdolescentAdultAffectAgeArchitectureAttentionCancer PatientCategoriesCause of DeathChildChild HealthChildhoodClinicalClinical ResearchCollectionCommunitiesComputer softwareDataData SetDiagnosisDiseaseEconomicsElectronic Health RecordEmployment StatusEnsureEnvironmentEthnic OriginEthnic groupEventFamilyFundingFutureGoalsGoldHealthHousingHungerInstitutionLinkLiteratureLiving ArrangementMalignant Childhood NeoplasmMalignant NeoplasmsMediatingMedical centerMental HealthMethodsModelingNational Cancer InstituteNatural Language ProcessingOutcomePatient CarePatient-Focused OutcomesPatientsPediatric OncologyPediatric cohortPerformancePhysical environmentPopulationPovertyPsyche structurePublicationsQuality of lifeRaceRecording of previous eventsResearchResourcesRiskRunningSamplingSocial EnvironmentSubstance abuse problemSymptomsSystems DevelopmentTechnologyTrainingTraumaUnited StatesUniversitiesWashingtonWorkbasecancer carecancer typeclinical practicecohortdata standardsdeep learningdesigndiscrete dataeducation accessexperimental studyhealth care availabilityhealth dataimprovedinfancyinnovationlearning strategynovelopen sourcepatient populationpediatric patientspediatricianpoint of carerelating to nervous systemsocialsocial factorssocial health determinantssubstance use
项目摘要
Project Summary/Abstract
Although cancer in children and adolescents is rare, it is the leading cause of death by disease past infancy
among children in the United States. The US Department of Health defines SDOH as “conditions in the
environment that affect health, functioning, and quality of life outcomes and risks." There is an extensive
literature base linking race, ethnicity, and SDOH to pediatric cancer outcomes. SDOH are commonly queried in
pediatric clinical practice. Very few of the SDOH data points are noted as discrete data-fields such as race and
ethnicity; most are documented as clinical narratives in Electronic Health Records (EHRs) which makes it
difficult to collect SDOH in clinical and research settings to improve patient care and advance clinical research.
We therefore propose to develop novel deep learning-based NLP technologies that can extract detailed SDOH
information from EHRs of pediatric patients for secondary use. Our dataset will include clinical notes of
pediatric patients from two institutions: Seattle Cancer Care Alliance (SCCA) and University of Washington
Medical Center (UWMC). SCCA cohort will include only pediatric cancer patients. To ensure the
generalizability of extraction approaches across different institutions and patient populations, UWMC cohort will
include a random sample from general pediatric population. Our final corpus will include thousands of clinical
notes of hundreds of pediatric patients over a period of ten years (1.1.2012-12.31.2021). We will design a
frame-based event representation schema to capture the salient details of the following categories of SDOH:
(1) health care access and quality, (2) living arrangements, (3) economic stability, (4) housing and hunger
insecurity, (5) prior trauma/loss, (6) education access and quality, (7) patient and family substance use history,
and (8) patient/family mental. We will use active learning to sample a diverse and representative set of notes
for gold standard annotation. Given this gold standard, our goal is automated extraction of SDOH from
clinical narratives of pediatric patients with deep learning-based NLP approaches. The proposed frame-
based event representation, active learning framework and NLP architectures will be based on ongoing work
from our ITCR - R21 project titled “Extraction of Symptom Burden from Clinical Narratives of Cancer Patients
using Natural Language Processing” (1 R21 CA258242-01). All models and their implementations produced
during the execution of this project will be shared with the community as open-source resources.
项目摘要/摘要
虽然癌症在儿童和青少年中很少见,但它是婴儿期以后因疾病死亡的主要原因。
在美国的儿童中。美国卫生部对SDOH的定义是:
影响健康、功能和生活质量的环境结果和风险。
将种族、民族和SDOH与儿科癌症结局联系起来的文献基础。通常在中查询SDOH
儿科临床实践。SDOH数据点很少被标记为离散数据字段,如RACE和
种族;大多数作为临床叙述被记录在电子健康记录(EHR)中,这使得
难以在临床和研究环境中收集SDOH,以改善患者护理和推进临床研究。
因此,我们建议开发新的基于深度学习的自然语言处理技术,该技术可以提取详细的SDOH
来自儿科患者电子病历的信息,供二次使用。我们的数据集将包括以下临床记录
来自两个机构的儿科患者:西雅图癌症护理联盟(SCCA)和华盛顿大学
医疗中心(UWMC)。SCCA队列将仅包括儿科癌症患者。为了确保
不同机构和患者群体的提取方法的概括性,UWMC队列将
包括从普通儿科人群中随机抽取的样本。我们的最终语料库将包括数千个临床
十年间(2012年1月1日-2021年12月31日)数百名儿科患者的笔记。我们将设计一个
基于帧的事件表示方案,以捕获以下SDOH类别的显著细节:
(1)保健机会和质量;(2)生活安排;(3)经济稳定;(4)住房和饥饿
不安全感,(5)既往创伤/损失,(6)受教育机会和质量,(7)患者和家庭药物使用史,
(8)病人/家庭心理。我们将使用主动学习来采样一组不同的和有代表性的笔记
用于黄金标准注释。考虑到这一黄金标准,我们的目标是自动从
采用基于深度学习的NLP方法的儿科患者的临床叙述。建议的框架如下:
基于事件表示、主动学习框架和NLP架构将基于正在进行的工作
摘自我们的ITCR-R21项目,题为《从癌症患者的临床叙述中提取症状负担》
使用自然语言处理“(1 R21 CA258242-01)。生产的所有模型及其实现
在这个项目执行期间,将作为开源资源与社区共享。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meliha Yetisgen其他文献
Meliha Yetisgen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meliha Yetisgen', 18)}}的其他基金
Extraction of Symptom Burden from Clinical Narratives of Cancer Patients using Natural Language Processing
使用自然语言处理从癌症患者的临床叙述中提取症状负担
- 批准号:
10179677 - 财政年份:2021
- 资助金额:
$ 27.45万 - 项目类别:
Using NLP to Extract Clinically Important Recommendations from Radiology Reports
使用 NLP 从放射学报告中提取临床上重要的建议
- 批准号:
8635902 - 财政年份:2014
- 资助金额:
$ 27.45万 - 项目类别:
Using NLP to Extract Clinically Important Recommendations from Radiology Reports
使用 NLP 从放射学报告中提取临床上重要的建议
- 批准号:
8804856 - 财政年份:2014
- 资助金额:
$ 27.45万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 27.45万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 27.45万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 27.45万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 27.45万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 27.45万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 27.45万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 27.45万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 27.45万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 27.45万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 27.45万 - 项目类别:
Research Grant