Using NLP to Extract Clinically Important Recommendations from Radiology Reports

使用 NLP 从放射学报告中提取临床上重要的建议

基本信息

  • 批准号:
    8635902
  • 负责人:
  • 金额:
    $ 25.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-03-01 至 2016-02-29
  • 项目状态:
    已结题

项目摘要

Abstract Communication of clinically important follow-up recommendations when abnormalities are identified on imaging studies is prone to error. The absence of an automated system to identify and track radiology follow-up recommendations is an important barrier to ensuring timely follow-up of patients, especially for non-acute but potentially life threatening and unexpected findings. The primary goal of this proposal is to develop a Natural Language Processing (NLP) system to extract clinically important recommendation information from free-text radiology reports. Each radiology report will be preprocessed at the structural, syntactic, and semantic level to generate features that will be used to extract the boundaries of sentences that include recommendation information as well as the details of reason for recommendation, requested imaging test, and recommendation time frame. We will use a large corpus of free-text radiology reports represented by a mixture of modalities (e.g., radiography, computed tomography, ultrasound, and magnetic resonance imaging (MRI)) from three different institutions. Using this dataset we will perform the following specific aims: Aim 1. Create a multi- institutional radiology report corpus annotated for clinically important recommendation information; Aim 2. Develop a novel NLP system to extract clinically important recommendations in radiology reports. The proposed research is innovative because it will generate a new text processing approach that can be used to flag reports visually and electronically so that separate workflow processes can be initiated to reduce the chance that necessary investigations or interventions suggested in the report are missed by clinicians. The proposed set of tools will be disseminated to the biomedical informatics community as open source tools.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Meliha Yetisgen其他文献

Meliha Yetisgen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Meliha Yetisgen', 18)}}的其他基金

Extraction of Symptom Burden from Clinical Narratives of Cancer Patients using Natural Language Processing
使用自然语言处理从癌症患者的临床叙述中提取症状负担
  • 批准号:
    10591957
  • 财政年份:
    2022
  • 资助金额:
    $ 25.73万
  • 项目类别:
Extraction of Symptom Burden from Clinical Narratives of Cancer Patients using Natural Language Processing
使用自然语言处理从癌症患者的临床叙述中提取症状负担
  • 批准号:
    10179677
  • 财政年份:
    2021
  • 资助金额:
    $ 25.73万
  • 项目类别:
Using NLP to Extract Clinically Important Recommendations from Radiology Reports
使用 NLP 从放射学报告中提取临床上重要的建议
  • 批准号:
    8804856
  • 财政年份:
    2014
  • 资助金额:
    $ 25.73万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 25.73万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 25.73万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.73万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.73万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 25.73万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.73万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 25.73万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 25.73万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 25.73万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.73万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了