A knowledge map to find Alzheimer's disease drugs

一张知识图谱寻找阿尔茨海默病药物

基本信息

  • 批准号:
    10198233
  • 负责人:
  • 金额:
    $ 38.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-30 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT. This Supplement extends Aims 1 and 2 of the parent grant on Alzheimer’s Disease (AD) by developing: prospective benchmarks for algorithms that predict biomarkers of disease risk (Aim 1) and new algorithms to support drug repositioning (Aim 2). Both extensions strengthen Aims 1 and 2 for AD but also have immediate applications for research on COVID-19 disease in keeping with NOT-AG-20-022. AIM 1 of the parent grant develops EA-ML, a Machine Learning (ML) pipeline to compare coding mutations in individuals with and without AD. The output is a list of genes with which to predict AD risk from their mutations. While the parent grant has multiple criteria for success, none are prospective given the vast lead-time between AD onset and symptoms. Supplemental Aim 1 adds prospective testing, using COVID-19. This is possible because the UK Biobank has begun to annotate its 50,000 public exomes with the COVID-19 status of individuals, including who had severe morbidity or mild symptoms at worst. The biobank will also add 150,000 more exomes by end 2020. Accordingly, we will apply EA-ML to the current UK biobank data to identify human genetic biomarkers that distinguish severe from mild cases and then test EA-ML predictions of COVID-19 virulence prospectively, on the exomes that are newly added to the biobank. As a further new benchmark, we will also compare EA-ML to a novel “EA-Wavelet” algorithm, also tested prospectively on COVID-19. EA- Wavelet sorts cases from controls by factoring EA over the entire network of human protein-protein interactions. The results will tell us which of EA-ML, EA-Wavelet, or combination thereof is the best at identifying critical biomarkers and clinical risk of AD, while also doing the same for COVID-19. Aim 2 of the parent grant develops drug repositioning for AD by linking target genes and drugs via knowledge maps of functional interactions. Here, we propose a complementary approach that connect genes to drugs via structural maps of binding epitopes. For this we will comprehensively map evolutionarily important sites in the structural proteome of genes that are associated with AD. The approach exploits EA theory to measure past and present evolutionary forces in fitness landscapes, and it takes into account current sequence variations to guard against any possible mutational escape from drugs that target these epitopes. The output will be surface accessible regions of proteins that can then be used for (i) computational docking of small molecules towards drug repurposing, combination therapy, and lead discovery for drug design3-5; (ii) engineering mimetic peptides or other molecules that can inhibit normal interactions6; and (iii) CRISPR engineering or peptide synthesis that create antigens for more effective vaccines7, 8. These automated mapping tools are general, and besides in SARS-CoV-2, will identify an entire new structural library of functional sites to target for AD therapy with repurposed drugs.
摘要。本补充将阿尔茨海默病(AD)父母补助金的目标1和目标2延长了

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OLIVIER LICHTARGE其他文献

OLIVIER LICHTARGE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OLIVIER LICHTARGE', 18)}}的其他基金

2022 Human Genetic Variation and Disease GRC and GRS
2022人类遗传变异与疾病GRC和GRS
  • 批准号:
    10468402
  • 财政年份:
    2022
  • 资助金额:
    $ 38.66万
  • 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
  • 批准号:
    10436879
  • 财政年份:
    2021
  • 资助金额:
    $ 38.66万
  • 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
  • 批准号:
    10622973
  • 财政年份:
    2021
  • 资助金额:
    $ 38.66万
  • 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
  • 批准号:
    10669697
  • 财政年份:
    2021
  • 资助金额:
    $ 38.66万
  • 项目类别:
Cloud Computing for AD
AD 云计算
  • 批准号:
    10827623
  • 财政年份:
    2021
  • 资助金额:
    $ 38.66万
  • 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
  • 批准号:
    10219658
  • 财政年份:
    2021
  • 资助金额:
    $ 38.66万
  • 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
  • 批准号:
    10163764
  • 财政年份:
    2018
  • 资助金额:
    $ 38.66万
  • 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
  • 批准号:
    10456711
  • 财政年份:
    2018
  • 资助金额:
    $ 38.66万
  • 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
  • 批准号:
    9975673
  • 财政年份:
    2018
  • 资助金额:
    $ 38.66万
  • 项目类别:
A Knowledge Map to Find Alzheimer's Disease Drugs
寻找阿尔茨海默病药物的知识图谱
  • 批准号:
    9928609
  • 财政年份:
    2018
  • 资助金额:
    $ 38.66万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 38.66万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.66万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 38.66万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.66万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 38.66万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 38.66万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.66万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 38.66万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 38.66万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.66万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了