A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
基本信息
- 批准号:10456711
- 负责人:
- 金额:$ 79.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAffectAlgorithmsAllelesAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease patientAlzheimer&aposs disease riskAmyloid beta-ProteinAmyloid beta-Protein PrecursorAnimal ModelBacterial Drug ResistanceBehaviorCalculiCandidate Disease GeneCell modelClinicalCombined Modality TherapyCommunitiesComplexCultured CellsDNADataDatabasesDementiaDetectionDiffusionDiseaseDrug CombinationsDrug TargetingEquilibriumEvolutionFunctional disorderGene TargetingGenesGenomeGenotypeHumanHybridsIn VitroIncidenceIndividualInflammationInflammatoryKnowledgeLanguageLightLiteratureMachine LearningMalignant NeoplasmsMapsMathematicsMeasuresMetabolismMethodsModelingMolecularMolecular EvolutionMutationPathogenesisPathologyPathway interactionsPatientsPeptidesPharmaceutical PreparationsPharmacologyPharmacotherapyPhenotypeProcessProductionPubMedResolutionRestRisk FactorsSourceStructureSymptomsSystemTestingTextTherapeuticTimeTrainingValidationVariantWorkaging populationautism spectrum disorderbaseclinically relevantcohortdatabase structuredisorder riskdrug repurposingdrug testingefficacy validationexomeexperimental studyfallsgene functiongene interactiongenetic informationgenetic variantgenome wide association studyheterogenous datahigh dimensionalityimprovedin vivoinfancyinnovationinterestmolecular modelingmouse modelneuroinflammationnovelnovel strategiesprecision drugsprotective factorsscreeningstemstructured datasuccesssynergismtau Proteinstext searchingunstructured datavirtual
项目摘要
To stem the rising incidence of Alzheimer's disease (AD) in our aging population, new methods to repurpose
and combine drugs against Alzheimer's disease (AD) are acutely required. This is a challenge, however,
because the complex polygenic basis of AD remains opaque, and rational methods to repurpose drugs are in
early years, even for well-defined gene targets. To address these problems, we propose new algorithms to
integrate data on a very large scale so as to combine evolutionary information and high-throughput experimental
observations with the knowledge conveyed by text in the literature. First, to detect disease-relevant genome
variations in AD patients, Aim 1 will combine a novel mathematical calculus of mutational landscapes with
machine learning, in so doing suggesting primary candidate genes for drug targeting based on signs of
mutational selection in cases or controls. Next, to repurpose and combine drugs targeting these genes, Aim 2
will map a large fraction of all that is known about genes, phenotypes, and drugs into a single high-dimensional
network that represents their interactions as described in various databases (structured data) and in the literature
(unstructured data). The topology of this network will determine the optimal choice of single drug or combination
therapy in an approach that can be personalized. Finally, to validate efficacy experimentally, Aim 3 will test both
our candidate genes and drugs with state-of-the-art in vitro and in vivo screens. Feasibility rests with prior studies
on evolution, networks, systems, and text-mining that demonstrate accurate predictions of deleterious mutations
and their clinical sequelae and the discovery of drivers of diseases. Broadly, this work will yield proof of principle
for a novel quantitative model that integrates fundamental concepts from mathematics and molecular evolution,
and for a low resolution but large-scale map of biomedical knowledge in which network notions of distance
computed by machine learning identify relevant functional hypothesis that would otherwise be easily overlooked.
The result will be a new experimental ability to unravel the genotype-phenotype relationship in Alzheimer's
Disease so as to guide drug therapy.
为了遏制阿尔茨海默病(AD)在我们老龄化人口中发病率的上升,重新调整用途的新方法
以及联合治疗阿尔茨海默病(AD)的药物是迫切需要的。然而,这是一个挑战,
因为阿尔茨海默病复杂的多基因基础仍然不清楚,重新调整药物用途的合理方法正在
早些年,即使是明确定义的基因靶点。为了解决这些问题,我们提出了新的算法来
大规模集成数据,以便将进化信息和高通量实验相结合
用文献中的文字所传达的知识进行观察。第一,检测与疾病相关的基因组
AD患者的变异,目标1将把一种新的突变景观的数学演算与
机器学习,在这样做的基础上建议药物靶向的主要候选基因的迹象
病例或对照中的突变选择。下一步,重新调整用途并结合针对这些基因的药物,目标2
将把所有已知的基因、表型和药物的很大一部分映射到单一的高维
表示各种数据库(结构化数据)和文献中描述的它们的交互的网络
(非结构化数据)。这个网络的拓扑结构将决定单一药物或联合药物的最佳选择
以一种可以个性化的方法进行治疗。最后,为了从实验上验证有效性,Aim 3将测试这两种测试
我们的候选基因和药物具有最先进的体外和体内筛选。可行性取决于先前的研究。
关于进化、网络、系统和文本挖掘,它们展示了对有害突变的准确预测
以及他们的临床后遗症和疾病驱动因素的发现。总的来说,这项工作将产生原则性的证明
对于一个集成了数学和分子进化的基本概念的新的量化模型,
对于低分辨率但大规模的生物医学知识地图,其中网络距离的概念
通过机器学习计算,确定相关的功能假设,否则很容易被忽视。
其结果将是一种新的实验能力,可以解开阿尔茨海默氏症患者的基因-表型关系
从而指导药物治疗。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OLIVIER LICHTARGE其他文献
OLIVIER LICHTARGE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OLIVIER LICHTARGE', 18)}}的其他基金
2022 Human Genetic Variation and Disease GRC and GRS
2022人类遗传变异与疾病GRC和GRS
- 批准号:
10468402 - 财政年份:2022
- 资助金额:
$ 79.25万 - 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
- 批准号:
10436879 - 财政年份:2021
- 资助金额:
$ 79.25万 - 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
- 批准号:
10622973 - 财政年份:2021
- 资助金额:
$ 79.25万 - 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
- 批准号:
10669697 - 财政年份:2021
- 资助金额:
$ 79.25万 - 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
- 批准号:
10219658 - 财政年份:2021
- 资助金额:
$ 79.25万 - 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
- 批准号:
10198233 - 财政年份:2018
- 资助金额:
$ 79.25万 - 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
- 批准号:
10163764 - 财政年份:2018
- 资助金额:
$ 79.25万 - 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
- 批准号:
9975673 - 财政年份:2018
- 资助金额:
$ 79.25万 - 项目类别:
A Knowledge Map to Find Alzheimer's Disease Drugs
寻找阿尔茨海默病药物的知识图谱
- 批准号:
9928609 - 财政年份:2018
- 资助金额:
$ 79.25万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 79.25万 - 项目类别:
Research Grant














{{item.name}}会员




