Cognitive Computing of Alzheimer's Disease Genes and Risk

阿尔茨海默病基因和风险的认知计算

基本信息

  • 批准号:
    10436879
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Cognitive Computing of Alzheimer’s Disease Genes and Risk The molecular basis and genetic architecture of dementia remain a puzzle. As no drug yet prevents, delays, or reverses it, aging populations potentially face a tidal threat of incipient and socially disruptive Alzheimer’s Disease (AD) cases. Genome-wide association studies (GWAS) have linked over 100 loci with AD and explain much of population attributable risk, but only a fraction of heritability. This heritability gap means it remains difficult to design and assess which surveillance, screening, preventive, and stratification programs are effective. In turn, this hinders therapeutic trials. The challenge in translating genetic variants into patient classifications is twofold. First, AD is polygenic, so relevant disease driving mutations are spread thin across a multitude of different genes and patients. Second, current interpretations of the deleterious effects of mutations lack accuracy, so the impactful few cannot be distinguished from the benign multitude in any given subject. These problems compound and fog the statistical genetics of AD risk and morbidity with poor signal to noise ratio. The crux of our solution is to add a massive amount of new information, exploit it efficiently through computation, then perform rigorous multi-pronged experimental validation. We start from the hypothesis that AD arises through mutational perturbations that affect functional pathways beyond the built-in evolutionary tolerances. New algorithms compute these excessive mutational forces and place them in integrative machine learning frameworks to sort between AD patients and controls, and which can also reflect functional interactions among proteins or genes. Innovations include a mathematical model of evolution based on calculus; ensemble machine learning over human genome variations; and harmonic analysis of mutational perturbations in functional networks. The outcome will, for the first time, integrate genomic variations relevant to AD in the context of all relevant evolutionary history and all known functional interactions. In practice, this will increase power and resolution, enable gender-specific analysis and AD stratification of men and women, and identify new and experimentally validated AD genes. To carry out this program, AIM 1 will fuse a novel mathematical analysis of evolution with machine learning and network wavelet theory. This will yield complementary integrative approaches to identify genes and mutations that sort AD vs healthy subjects based on the abnormal mutational burden of rare gene variants in sequenced cohorts. AIM 2 will focus similar tools on patients and controls with known paradoxical phenotypes that run counter to their APOEɛ2/4 status. The results will identify modifier genes that drive AD in APOEɛ2 carriers or that protect APOEɛ4 carriers from AD. AIM 3 will provide direct experimental validation, leveraging high-throughput, robot-assisted genetic modifier screening in Drosophila models of Tau or amyloid-beta peptide neurotoxicity. Promising targets will be further confirmed in mammalian neuronal cell culture. The work will validate a new approach to enlarge our understanding of genetic complexity in Alzheimer’s Disease for the identification of gene drivers and modifiers to guide clinical assessment of AD risk stratification.
阿尔茨海默病基因和风险的认知计算 痴呆症的分子基础和遗传结构仍然是一个谜。由于没有药物可以预防、延迟或 逆转它,老龄化人口可能面临早期和社会破坏性阿尔茨海默氏症的潮汐威胁 疾病(AD)病例。全基因组关联研究(GWAS)已经将100多个位点与AD联系起来,并解释了 大部分的人口归因风险,但只有一小部分的遗传性。这种遗传性差距意味着它仍然存在 难以设计和评估哪些监测、筛查、预防和分层方案是有效的。 反过来,这又阻碍了治疗试验。将遗传变异转化为患者分类的挑战是 双重的首先,AD是多基因的,因此相关的疾病驱动突变在众多的基因组中分布很薄。 不同的基因和患者。其次,目前对突变有害影响的解释缺乏 准确性,所以在任何给定的主题中,有影响力的少数人无法与良性的多数人区分开来。这些 这些问题使AD风险和发病率的统计遗传学变得复杂和模糊,信噪比很差。的 我们解决方案的关键是增加大量的新信息,通过计算有效地利用它, 然后进行严格的多方面实验验证。我们从假设开始,AD是通过 影响功能途径的突变扰动超出了固有的进化容忍度。新 算法计算这些过度的突变力并将其置于综合机器学习中 在AD患者和对照组之间进行分类的框架,也可以反映AD患者和对照组之间的功能性相互作用。 蛋白质或基因。创新包括基于微积分的进化数学模型;集成机器 人类基因组变异的研究;以及功能基因组中突变扰动的谐波分析。 网络.结果将首次整合与AD相关的基因组变异, 相关的进化历史和所有已知的功能相互作用。实际上,这将增加功率, 解决,使性别特异性分析和男性和女性的AD分层,并确定新的和 实验验证的AD基因。为了执行这一计划,AIM 1将融合一种新的数学分析, 进化与机器学习和网络小波理论。这将产生互补的一体化 方法来识别基因和突变,分类AD与健康受试者的基础上,异常突变, 测序队列中罕见基因变异的负担。AIM 2将把类似的工具集中在患者和对照组上, 与APOE β 2/4状态相反的已知矛盾表型。结果将确定修饰基因 在APOE β 2携带者中驱动AD或保护APOE β 4携带者免受AD。AIM 3将提供直接的实验 验证,利用高通量,机器人辅助的遗传修饰剂筛选果蝇模型的Tau或 淀粉样β肽神经毒性有希望的靶点将在哺乳动物神经细胞中得到进一步证实 文化这项工作将验证一种新的方法,以扩大我们对阿尔茨海默氏症遗传复杂性的理解 用于识别基因驱动因子和修饰因子的疾病,以指导AD风险分层的临床评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OLIVIER LICHTARGE其他文献

OLIVIER LICHTARGE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OLIVIER LICHTARGE', 18)}}的其他基金

2022 Human Genetic Variation and Disease GRC and GRS
2022人类遗传变异与疾病GRC和GRS
  • 批准号:
    10468402
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
  • 批准号:
    10622973
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
  • 批准号:
    10669697
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
Cloud Computing for AD
AD 云计算
  • 批准号:
    10827623
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
  • 批准号:
    10219658
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
  • 批准号:
    10198233
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
  • 批准号:
    10163764
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
  • 批准号:
    10456711
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
  • 批准号:
    9975673
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
A Knowledge Map to Find Alzheimer's Disease Drugs
寻找阿尔茨海默病药物的知识图谱
  • 批准号:
    9928609
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:

相似海外基金

Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
  • 批准号:
    24K18114
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
  • 批准号:
    10089306
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
  • 批准号:
    498288
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Operating Grants
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
  • 批准号:
    23K20339
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
  • 批准号:
    2740736
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
  • 批准号:
    2305890
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
  • 批准号:
    2406592
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
  • 批准号:
    498278
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
  • 批准号:
    24K04938
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了