Cognitive Computing of Alzheimer's Disease Genes and Risk

阿尔茨海默病基因和风险的认知计算

基本信息

  • 批准号:
    10436879
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Cognitive Computing of Alzheimer’s Disease Genes and Risk The molecular basis and genetic architecture of dementia remain a puzzle. As no drug yet prevents, delays, or reverses it, aging populations potentially face a tidal threat of incipient and socially disruptive Alzheimer’s Disease (AD) cases. Genome-wide association studies (GWAS) have linked over 100 loci with AD and explain much of population attributable risk, but only a fraction of heritability. This heritability gap means it remains difficult to design and assess which surveillance, screening, preventive, and stratification programs are effective. In turn, this hinders therapeutic trials. The challenge in translating genetic variants into patient classifications is twofold. First, AD is polygenic, so relevant disease driving mutations are spread thin across a multitude of different genes and patients. Second, current interpretations of the deleterious effects of mutations lack accuracy, so the impactful few cannot be distinguished from the benign multitude in any given subject. These problems compound and fog the statistical genetics of AD risk and morbidity with poor signal to noise ratio. The crux of our solution is to add a massive amount of new information, exploit it efficiently through computation, then perform rigorous multi-pronged experimental validation. We start from the hypothesis that AD arises through mutational perturbations that affect functional pathways beyond the built-in evolutionary tolerances. New algorithms compute these excessive mutational forces and place them in integrative machine learning frameworks to sort between AD patients and controls, and which can also reflect functional interactions among proteins or genes. Innovations include a mathematical model of evolution based on calculus; ensemble machine learning over human genome variations; and harmonic analysis of mutational perturbations in functional networks. The outcome will, for the first time, integrate genomic variations relevant to AD in the context of all relevant evolutionary history and all known functional interactions. In practice, this will increase power and resolution, enable gender-specific analysis and AD stratification of men and women, and identify new and experimentally validated AD genes. To carry out this program, AIM 1 will fuse a novel mathematical analysis of evolution with machine learning and network wavelet theory. This will yield complementary integrative approaches to identify genes and mutations that sort AD vs healthy subjects based on the abnormal mutational burden of rare gene variants in sequenced cohorts. AIM 2 will focus similar tools on patients and controls with known paradoxical phenotypes that run counter to their APOEɛ2/4 status. The results will identify modifier genes that drive AD in APOEɛ2 carriers or that protect APOEɛ4 carriers from AD. AIM 3 will provide direct experimental validation, leveraging high-throughput, robot-assisted genetic modifier screening in Drosophila models of Tau or amyloid-beta peptide neurotoxicity. Promising targets will be further confirmed in mammalian neuronal cell culture. The work will validate a new approach to enlarge our understanding of genetic complexity in Alzheimer’s Disease for the identification of gene drivers and modifiers to guide clinical assessment of AD risk stratification.
阿尔茨海默病基因和风险的认知计算 痴呆症的分子基础和遗传结构仍然是一个谜。由于目前还没有药物可以预防、延迟或 相反,老龄化人口可能面临早期和社会破坏性阿尔茨海默氏症的威胁 疾病(AD)病例。全基因组关联研究 (GWAS) 已将 100 多个位点与 AD 联系起来并解释 大部分人口归因于风险,但只有一小部分归因于遗传性。这种遗传力差距仍然存在 很难设计和评估哪些监测、筛查、预防和分层计划是有效的。 反过来,这又阻碍了治疗试验。将遗传变异转化为患者分类的挑战是 双重。首先,AD 是多基因的,因此相关的疾病驱动突变分散在多种疾病中 不同的基因和患者。其次,目前对突变有害影响的解释缺乏 准确性,因此在任何特定主题中,无法将有影响力的少数人与良性的多数人区分开来。这些 由于信噪比较差,这些问题使 AD 风险和发病率的统计遗传学变得更加复杂和模糊。这 我们解决方案的关键是添加大量新信息,通过计算有效地利用它, 然后进行严格的多管齐下的实验验证。我们从 AD 产生的假设开始 影响功能途径超出内在进化耐受性的突变扰动。新的 算法计算这些过度的突变力并将它们放入综合机器学习中 AD 患者和对照组之间的分类框架,也可以反映之间的功能相互作用 蛋白质或基因。创新包括基于微积分的进化数学模型;合奏机 了解人类基因组变异;功能突变扰动的调和分析 网络。该成果将首次将与 AD 相关的基因组变异整合到所有疾病的背景中。 相关的进化历史和所有已知的功能相互作用。在实践中,这将增加功率和 决议,实现性别特定分析和男性和女性的 AD 分层,并确定新的和 经过实验验证的 AD 基因。为了执行该计划,AIM 1 将融合一种新颖的数学分析 机器学习和网络小波理论的进化。这将产生互补的综合 识别基因和突变的方法,根据异常突变对 AD 与健康受试者进行分类 测序队列中罕见基因变异的负担。 AIM 2 将把类似的工具集中在患者和对照者身上 已知的矛盾表型与其 APOEɛ2/4 状态背道而驰。结果将识别修饰基因 驱动 APOEɛ2 载体中的 AD 或保护 APOEɛ4 载体免受 AD 影响。 AIM 3将提供直接实验 验证,利用高通量、机器人辅助的遗传修饰筛选果蝇模型中的 Tau 或 淀粉样β肽神经毒性。有前景的靶点将在哺乳动物神经元细胞中得到进一步证实 文化。这项工作将验证一种新方法,以扩大我们对阿尔茨海默病遗传复杂性的理解 用于识别疾病基因驱动因素和修饰因素,以指导 AD 风险分层的临床评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OLIVIER LICHTARGE其他文献

OLIVIER LICHTARGE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OLIVIER LICHTARGE', 18)}}的其他基金

2022 Human Genetic Variation and Disease GRC and GRS
2022人类遗传变异与疾病GRC和GRS
  • 批准号:
    10468402
  • 财政年份:
    2022
  • 资助金额:
    $ 80万
  • 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
  • 批准号:
    10622973
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
  • 批准号:
    10669697
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
Cloud Computing for AD
AD 云计算
  • 批准号:
    10827623
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
  • 批准号:
    10219658
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
  • 批准号:
    10198233
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
  • 批准号:
    10163764
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
  • 批准号:
    10456711
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
  • 批准号:
    9975673
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:
A Knowledge Map to Find Alzheimer's Disease Drugs
寻找阿尔茨海默病药物的知识图谱
  • 批准号:
    9928609
  • 财政年份:
    2018
  • 资助金额:
    $ 80万
  • 项目类别:

相似海外基金

Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
  • 批准号:
    24K18114
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
  • 批准号:
    10089306
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
  • 批准号:
    498288
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Operating Grants
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
  • 批准号:
    23K20339
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
  • 批准号:
    2740736
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
  • 批准号:
    2406592
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
  • 批准号:
    2305890
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
  • 批准号:
    23K20355
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
  • 批准号:
    23K24782
  • 财政年份:
    2024
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了