Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
基本信息
- 批准号:10669697
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAffectAgingAlgorithmsAllelesAlzheimer associated neurodegenerationAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease modelAlzheimer&aposs disease patientAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAlzheimer’s disease biomarkerAmyloid beta-ProteinApolipoprotein EAttentionAutomobile DrivingAutopsyBackBenignBiological AssayBiological MarkersBiological ModelsBlindedBrainCalculiCandidate Disease GeneCell Culture TechniquesCellsClassificationClinicalClinical assessmentsCodeCommunitiesDataDementiaDevelopmentDiseaseDisease stratificationDrosophila genusElderlyEvaluationEvolutionFaceFogsFunctional disorderFutureGenderGene Expression ProfileGene ModifiedGene MutationGenesGeneticGenetic MarkersGenomeGenomicsGoalsHeritabilityHumanHuman GenomeIndividualInterventionLinkMachine LearningMedicineMissense MutationModelingMolecularMorbidity - disease rateMusMutationMutation AnalysisNeuronal DysfunctionNeuronsNoiseOnset of illnessOutcomePathogenesisPathogenicityPathway interactionsPatientsPerformancePharmaceutical PreparationsPhenotypePopulationPopulation Attributable RisksPreventiveProteinsRecording of previous eventsRegression AnalysisResearchResolutionRestRiskRisk AssessmentRunningSignal TransductionSocial ImpactsSortingStratificationSymptomsSystemTestingTherapeuticTherapeutic TrialsThinnessTimeTranslatingUntranslated RNAValidationVariantWestern BlottingWomanWorkcausal variantclinical riskcognitive computingcohortdesigndrug developmenteconomic impactexperimental studyfitnessgene discoverygene networkgenetic architecturegenetic variantgenome sequencinggenome wide association studygenomic variationhuman datain vivo evaluationinnovationinsightmachine learning frameworkmathematical analysismathematical learningmathematical modelmennerve stem cellneuropathologyneurotoxicitynovelnovel strategiespreventprogramsrisk stratificationrobot assistancescreeningsocialsuccesstau Proteinstext searchingtheoriestool
项目摘要
Cognitive Computing of Alzheimer’s Disease Genes and Risk
The molecular basis and genetic architecture of dementia remain a puzzle. As no drug yet prevents, delays, or
reverses it, aging populations potentially face a tidal threat of incipient and socially disruptive Alzheimer’s
Disease (AD) cases. Genome-wide association studies (GWAS) have linked over 100 loci with AD and explain
much of population attributable risk, but only a fraction of heritability. This heritability gap means it remains
difficult to design and assess which surveillance, screening, preventive, and stratification programs are effective.
In turn, this hinders therapeutic trials. The challenge in translating genetic variants into patient classifications is
twofold. First, AD is polygenic, so relevant disease driving mutations are spread thin across a multitude of
different genes and patients. Second, current interpretations of the deleterious effects of mutations lack
accuracy, so the impactful few cannot be distinguished from the benign multitude in any given subject. These
problems compound and fog the statistical genetics of AD risk and morbidity with poor signal to noise ratio. The
crux of our solution is to add a massive amount of new information, exploit it efficiently through computation,
then perform rigorous multi-pronged experimental validation. We start from the hypothesis that AD arises through
mutational perturbations that affect functional pathways beyond the built-in evolutionary tolerances. New
algorithms compute these excessive mutational forces and place them in integrative machine learning
frameworks to sort between AD patients and controls, and which can also reflect functional interactions among
proteins or genes. Innovations include a mathematical model of evolution based on calculus; ensemble machine
learning over human genome variations; and harmonic analysis of mutational perturbations in functional
networks. The outcome will, for the first time, integrate genomic variations relevant to AD in the context of all
relevant evolutionary history and all known functional interactions. In practice, this will increase power and
resolution, enable gender-specific analysis and AD stratification of men and women, and identify new and
experimentally validated AD genes. To carry out this program, AIM 1 will fuse a novel mathematical analysis of
evolution with machine learning and network wavelet theory. This will yield complementary integrative
approaches to identify genes and mutations that sort AD vs healthy subjects based on the abnormal mutational
burden of rare gene variants in sequenced cohorts. AIM 2 will focus similar tools on patients and controls with
known paradoxical phenotypes that run counter to their APOEɛ2/4 status. The results will identify modifier genes
that drive AD in APOEɛ2 carriers or that protect APOEɛ4 carriers from AD. AIM 3 will provide direct experimental
validation, leveraging high-throughput, robot-assisted genetic modifier screening in Drosophila models of Tau or
amyloid-beta peptide neurotoxicity. Promising targets will be further confirmed in mammalian neuronal cell
culture. The work will validate a new approach to enlarge our understanding of genetic complexity in Alzheimer’s
Disease for the identification of gene drivers and modifiers to guide clinical assessment of AD risk stratification.
阿尔茨海默病基因和风险的认知计算
痴呆症的分子基础和遗传结构仍然是一个谜。由于没有药物可以预防、延迟或
逆转它,老龄化人口可能面临早期和社会破坏性阿尔茨海默氏症的潮汐威胁
疾病(AD)病例。全基因组关联研究(GWAS)已经将100多个位点与AD联系起来,并解释了
大部分的人口归因风险,但只有一小部分的遗传性。这种遗传性差距意味着它仍然存在
难以设计和评估哪些监测、筛查、预防和分层方案是有效的。
反过来,这又阻碍了治疗试验。将遗传变异转化为患者分类的挑战是
双重的首先,AD是多基因的,因此相关的疾病驱动突变在众多的基因组中分布很薄。
不同的基因和患者。其次,目前对突变有害影响的解释缺乏
准确性,所以在任何给定的主题中,有影响力的少数人无法与良性的多数人区分开来。这些
这些问题使AD风险和发病率的统计遗传学变得复杂和模糊,信噪比很差。的
我们解决方案的关键是增加大量的新信息,通过计算有效地利用它,
然后进行严格的多方面实验验证。我们从假设开始,AD是通过
影响功能途径的突变扰动超出了固有的进化容忍度。新
算法计算这些过度的突变力并将其置于综合机器学习中
在AD患者和对照组之间进行分类的框架,也可以反映AD患者和对照组之间的功能性相互作用。
蛋白质或基因。创新包括基于微积分的进化数学模型;集成机器
人类基因组变异的研究;以及功能基因组中突变扰动的谐波分析。
网络.结果将首次整合与AD相关的基因组变异,
相关的进化历史和所有已知的功能相互作用。实际上,这将增加功率,
解决,使性别特异性分析和男性和女性的AD分层,并确定新的和
实验验证的AD基因。为了执行这一计划,AIM 1将融合一种新的数学分析,
进化与机器学习和网络小波理论。这将产生互补的一体化
方法来识别基因和突变,分类AD与健康受试者的基础上,异常突变,
测序队列中罕见基因变异的负担。AIM 2将把类似的工具集中在患者和对照组上,
与APOE β 2/4状态相反的已知矛盾表型。结果将确定修饰基因
在APOE β 2携带者中驱动AD或保护APOE β 4携带者免受AD。AIM 3将提供直接的实验
验证,利用高通量,机器人辅助的遗传修饰剂筛选果蝇模型的Tau或
淀粉样β肽神经毒性有希望的靶点将在哺乳动物神经细胞中得到进一步证实
文化这项工作将验证一种新的方法,以扩大我们对阿尔茨海默氏症遗传复杂性的理解
用于识别基因驱动因子和修饰因子的疾病,以指导AD风险分层的临床评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OLIVIER LICHTARGE其他文献
OLIVIER LICHTARGE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OLIVIER LICHTARGE', 18)}}的其他基金
2022 Human Genetic Variation and Disease GRC and GRS
2022人类遗传变异与疾病GRC和GRS
- 批准号:
10468402 - 财政年份:2022
- 资助金额:
$ 80万 - 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
- 批准号:
10436879 - 财政年份:2021
- 资助金额:
$ 80万 - 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
- 批准号:
10622973 - 财政年份:2021
- 资助金额:
$ 80万 - 项目类别:
Cognitive Computing of Alzheimer's Disease Genes and Risk
阿尔茨海默病基因和风险的认知计算
- 批准号:
10219658 - 财政年份:2021
- 资助金额:
$ 80万 - 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
- 批准号:
10198233 - 财政年份:2018
- 资助金额:
$ 80万 - 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
- 批准号:
10163764 - 财政年份:2018
- 资助金额:
$ 80万 - 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
- 批准号:
10456711 - 财政年份:2018
- 资助金额:
$ 80万 - 项目类别:
A knowledge map to find Alzheimer's disease drugs
一张知识图谱寻找阿尔茨海默病药物
- 批准号:
9975673 - 财政年份:2018
- 资助金额:
$ 80万 - 项目类别:
A Knowledge Map to Find Alzheimer's Disease Drugs
寻找阿尔茨海默病药物的知识图谱
- 批准号:
9928609 - 财政年份:2018
- 资助金额:
$ 80万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
- 批准号:
400097 - 财政年份:2019
- 资助金额:
$ 80万 - 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
- 批准号:
19K09017 - 财政年份:2019
- 资助金额:
$ 80万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
- 批准号:
18K09531 - 财政年份:2018
- 资助金额:
$ 80万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
- 批准号:
9766994 - 财政年份:2018
- 资助金额:
$ 80万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 80万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 80万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 80万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9925164 - 财政年份:2016
- 资助金额:
$ 80万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9345997 - 财政年份:2016
- 资助金额:
$ 80万 - 项目类别:














{{item.name}}会员




