Modeling network dynamics of cardiac right atrial ganglionic plexus to enable in silico testing of vagal neurostimulation strategies
对心脏右心房神经节丛的网络动力学进行建模,以实现迷走神经刺激策略的计算机测试
基本信息
- 批准号:10208324
- 负责人:
- 金额:$ 86.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2024-09-14
- 项目状态:已结题
- 来源:
- 关键词:AnatomyBiophysicsCardiacComputer ModelsDataData SourcesDatabasesDimensionsElectrophysiology (science)Family suidaeFoundationsGangliaHeartHeart AtriumHeart DiseasesHeterogeneityHumanKineticsLibrariesMedicineModelingMolecularNervous system structureNeuronsPhenotypePhysiologyPractice GuidelinesProteomicsRattusResourcesSex DifferencesSignal TransductionSystemTestingTimeLineTranscriptbasecombinatorialcomputational neurosciencedesignimprovedin silicomolecular phenotypenetwork modelsneural circuitneural networkneuroregulationparacrinerepositorysexsimulationspecies differencetherapy developmenttranscriptome sequencingtranscriptomics
项目摘要
The primary objective of the project is to develop computational models of neurons and networks
of the intrinsic cardiac nervous system (ICN), implement simulations on the o2S2PARC simulation
platform, in order to better understand how vagal inputs influence the local cardiac circuits, and
improve neuromodulatory medicine for heart disease. The project will follow a sequence of
increasing model complexity of the neurons and neural networks forming the right atrial ganglionic
plexus (RAGP) within the ICN, beginning with neuronal electrophysiology, building on these to
add neuromodulatory function and heterogeneity based on molecular phenotypes, and then
connecting these in networks examining their contributions to overall ICN dynamics for specific
predictions to control the heart. These models will account for species differences (rat vs. pig vs.
human) and sex differences.
It is now feasible to develop RAGP-ICN neuronal models incorporating the specific anatomical,
connectional and molecular diversity of the system in such a way as to directly predict approaches
to neuromodulatory therapy development. This has become feasible due to the current
emergence of comprehensive and foundational data on the system, including RNAseq and single
neuron transcriptomic data suggesting neuropeptidergic signaling driven paracrine networks to
explore in simulation. Combining these data with state-of-the-art computational neuroscience
repositories will produce modeling resources to inform and widely explore neuromodulatory
therapy opportunities at the heart within the next 4 years.
Major Tasks to be accomplished, their timeline, and their deliverables include:
Task 1: Mechanistic modeling of ICN neuron electrophysiology (timeline: Q1 to Q4)
Deliverables: Upon successful completion of three milestones, we expect to provide single neuron
models of distinct phenotypes, alone and combinatorial, reflecting the data, particularly
delineating the differences across sexes.
Task 2: Scalable neuromodulation models of ICN neuronal phenotypes (timeline: Q3 to Q6)
Deliverables: Completion of three tasks will provide an ensemble of low-dimensional models that
can be connected into a network model.
Task 3: Network modeling of ICN dynamics (timeline: Q5 to Q8)
Deliverables: Two milestones will produce network models of RAGP neurons with adaptive
neuromodulatory kinetics.
The project efforts follow a model-driven design strategy to build on the anatomical, molecular
and physiology data in the SPARC and other data sources on the ganglionic neural circuits,
transcript/prote-omics, and cellular mechanisms. The modeling approach leverages the available
library of quantitative representations of neuronal biophysics (e.g., NeuronDB and ModelDB
databases) and follows the credible practice guidelines.
该项目的主要目标是开发神经元和网络的计算模型
内在心脏神经系统 (ICN),在 o2S2PARC 模拟上实施模拟
平台,以便更好地了解迷走神经输入如何影响局部心脏回路,以及
改善心脏病的神经调节药物。该项目将遵循一系列
增加形成右心房神经节的神经元和神经网络的模型复杂性
ICN 内的神经丛(RAGP),从神经元电生理学开始,在此基础上
根据分子表型添加神经调节功能和异质性,然后
将这些连接到网络中,检查它们对特定的 ICN 整体动态的贡献
预测控制心脏。这些模型将考虑物种差异(大鼠、猪、猪)。
人类)和性别差异。
现在可以开发结合特定解剖学、
系统的连接和分子多样性,以直接预测方法
神经调节疗法的发展。由于目前的情况,这已变得可行
系统上出现了全面的基础数据,包括 RNAseq 和单一数据
神经元转录组数据表明神经肽能信号驱动旁分泌网络
在模拟中探索。将这些数据与最先进的计算神经科学相结合
存储库将产生建模资源来告知和广泛探索神经调节
未来 4 年内的心脏治疗机会。
要完成的主要任务、时间表和可交付成果包括:
任务 1:ICN 神经元电生理学的机制建模(时间线:Q1 至 Q4)
可交付成果:在成功完成三个里程碑后,我们期望提供单个神经元
不同表型的模型,单独的和组合的,反映数据,特别是
描绘出性别之间的差异。
任务 2:ICN 神经元表型的可扩展神经调节模型(时间线:Q3 至 Q6)
可交付成果:完成三项任务将提供一组低维模型,
可以连接成网络模型。
任务 3:ICN 动态的网络建模(时间线:Q5 至 Q8)
可交付成果:两个里程碑将产生具有自适应能力的 RAGP 神经元网络模型
神经调节动力学。
该项目工作遵循模型驱动的设计策略,以解剖学、分子学为基础
SPARC 中的生理学数据和神经节神经回路的其他数据源,
转录本/蛋白质组学和细胞机制。建模方法利用了可用的
神经元生物物理学定量表示库(例如 NeuronDB 和 ModelDB
数据库)并遵循可靠的实践指南。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajanikanth Vadigepalli其他文献
Rajanikanth Vadigepalli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajanikanth Vadigepalli', 18)}}的其他基金
Modeling network dynamics of cardiac right atrial ganglionic plexus to enable in silico testing of vagal neurostimulation strategies
对心脏右心房神经节丛的网络动力学进行建模,以实现迷走神经刺激策略的计算机测试
- 批准号:
10467590 - 财政年份:2020
- 资助金额:
$ 86.63万 - 项目类别:
Chronic Alcohol Effects on Transcriptional Regulation in Liver Regeneration
慢性酒精对肝脏再生转录调节的影响
- 批准号:
7471773 - 财政年份:2008
- 资助金额:
$ 86.63万 - 项目类别:
Chronic Alcohol Effects on Transcriptional Regulation in Liver Regeneration
慢性酒精对肝脏再生转录调节的影响
- 批准号:
7587997 - 财政年份:2008
- 资助金额:
$ 86.63万 - 项目类别:
Mechanisms of Central Autonomic Orchestration of Blood Pressure
中枢自主神经调节血压的机制
- 批准号:
7486323 - 财政年份:2006
- 资助金额:
$ 86.63万 - 项目类别:
相似海外基金
FORTIFY - From Molecular Physiology to Biophysics of the Glymphatic System: a Regulatory Role for Aquaporin-4
FORTIFY - 从类淋巴系统的分子生理学到生物物理学:Aquaporin-4 的调节作用
- 批准号:
EP/Y023684/1 - 财政年份:2024
- 资助金额:
$ 86.63万 - 项目类别:
Research Grant
The Biophysics of Mesoscale, Reversible, Biomolecular Assemblies
中尺度可逆生物分子组装的生物物理学
- 批准号:
EP/Y000501/1 - 财政年份:2024
- 资助金额:
$ 86.63万 - 项目类别:
Fellowship
Biophysics of the brain’s waste disposal system: Understanding why we sleep
大脑废物处理系统的生物物理学:了解我们为什么睡觉
- 批准号:
DP230101113 - 财政年份:2023
- 资助金额:
$ 86.63万 - 项目类别:
Discovery Projects
CAREER: Surfactant Proteins that Stabilize Biomolecular Condensates: From Biophysics to Biomaterials for Biomanufacturing
职业:稳定生物分子缩合物的表面活性剂蛋白:从生物物理学到生物制造的生物材料
- 批准号:
2238914 - 财政年份:2023
- 资助金额:
$ 86.63万 - 项目类别:
Continuing Grant
Biophysics of liquid droplets in bacteria
细菌中液滴的生物物理学
- 批准号:
2887560 - 财政年份:2023
- 资助金额:
$ 86.63万 - 项目类别:
Studentship
REU Site: A Summer Research Experience in Structural and Computational Biology and Biophysics
REU 网站:结构与计算生物学和生物物理学的夏季研究经历
- 批准号:
2150396 - 财政年份:2023
- 资助金额:
$ 86.63万 - 项目类别:
Continuing Grant
Targeted Infusion Project: Creation of a Biophysics minor program for STEM success
有针对性的输液项目:为 STEM 成功创建生物物理学辅修课程
- 批准号:
2306506 - 财政年份:2023
- 资助金额:
$ 86.63万 - 项目类别:
Standard Grant
Center: REU Site: Interdisciplinary Research Opportunities in Biophysics
中心:REU 地点:生物物理学的跨学科研究机会
- 批准号:
2242779 - 财政年份:2023
- 资助金额:
$ 86.63万 - 项目类别:
Standard Grant