Predictive Models for Small-Molecule Accumulation in Gram-Negative Bacteria
革兰氏阴性细菌中小分子积累的预测模型
基本信息
- 批准号:10226047
- 负责人:
- 金额:$ 123.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-10 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:Acinetobacter baumanniiAddressAlgorithmic SoftwareAnti-Bacterial AgentsAntibiotic ResistanceAntibioticsArchitectureBacteriaBiochemicalBiochemistryBiological AssayBiological AvailabilityCellsChemicalsCommunitiesDataData SetDetectionDevelopmentEffectivenessEscherichia coliGram-Negative BacteriaGram-Negative Bacterial InfectionsHumanIncidenceIndividualInfectionInterdisciplinary StudyKineticsKnock-outLabelLeadLibrariesMachine LearningMammalian CellMass Spectrum AnalysisMeasurementMeasuresMembraneMicrobiologyModelingOralPartner in relationshipPenetrationPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPropertyPseudomonas aeruginosaPublic HealthQuantitative EvaluationsQuantitative Structure-Activity RelationshipRoleStructureTestingVariantanalogbasebiophysical modelcell envelopecheminformaticscombatcomputerized toolsdensitydesigndrug discoveryefflux pumphigh throughput screeningimprovedinhibitor/antagonistinterdisciplinary approachkinetic modellead optimizationlearning networkmultidisciplinaryneural networknovelpredictive modelingprogramsprospectivepublic health relevancescreeningsmall moleculesmall molecule librariessuccesstool
项目摘要
PROJECT SUMMARY
Predictive Models for Small-Molecule Accumulation in Gram-Negative Bacteria.
Antibiotic-resistant Gram-negative bacterial infections are increasing in incidence and novel antibiotics are
urgently needed to combat this growing threat to public health. A major roadblock to the development of novel
antibiotics is our poor understanding of the structural features of small molecules that correlate with bacterial
penetration and efflux. As a result, while potent biochemical inhibitors can often be identified for new targets,
developing them into compounds with whole-cell antibacterial activity has proven challenging.
To address this critical problem, we propose herein a comprehensive, multidisciplinary approach to develop
quantitative models to predict small-molecule penetration and efflux in Gram-negative bacteria. We have
pioneered a general platform for systematic, quantitative evaluation of small-molecule accumulation in bacteria,
using label-free LC-MS/MS detection and multivariate cheminformatic analysis. We have also developed
unique isogenic strain sets of wild-type, hyperporinated, efflux-knockout, and doubly-compromised E. coli,
P. aeruginosa, and A. baumannii that allow us to dissect the individual contributions of outer/inner membrane
penetration and active efflux to net accumulation, using a kinetic model that accurately recapitulates available
experimental data. Moreover, we have developed machine learning and neural network approaches to QSAR
(quantitative structure–activity relationship) modeling of pharmacological properties that will now be used to
develop predictive cheminformatic models for Gram-negative accumulation, penetration, and efflux.
This project will be carried out by a multidisciplinary SPEAR-GN Project Team (Small-molecule Penetration &
Efflux in Antibiotic-Resistant Gram-Negatives, “speargun”) involving the labs of Derek Tan (MSK, PI), Helen
Zgurskaya (OU, PI), Bradley Sherborne (Merck, Lead Collaborator), Valentin Rybenkov (OU, Co-I), Adam
Duerfeldt (OU, Co-I), Carl Balibar (Merck, Collaborator), and David McLaren (Merck, Collaborator), comprising
extensive combined expertise in organic and diversity-oriented synthesis, biochemistry, microbiology, high-
throughput screening, mass spectrometry, biophysical modeling, cheminformatics, and medicinal chemistry.
Herein, we will design and synthesize chemical libraries with diverse structural and physicochemical
properties; analyze their accumulation in the isogenic strain sets in both high-throughput and high-density
assay formats; extract kinetic parameters for penetration and efflux from the resulting experimental datasets;
develop and validate robust QSAR models for accumulation, penetration, and efflux; and demonstrate the utility
of these models in medicinal chemistry campaigns to develop novel Gram-negative antibiotics against three
targets. This project will provide a major advance in the field of antibacterial drug discovery, providing powerful
enabling tools to the scientific community to address this major threat to public health.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DEREK S TAN其他文献
DEREK S TAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DEREK S TAN', 18)}}的其他基金
Tri-Institutional PhD Program in Chemical Biology
化学生物学三机构博士项目
- 批准号:
10618939 - 财政年份:2020
- 资助金额:
$ 123.93万 - 项目类别:
Tri-Institutional PhD Program in Chemical Biology
化学生物学三机构博士项目
- 批准号:
10414800 - 财政年份:2020
- 资助金额:
$ 123.93万 - 项目类别:
Predictive Models for Small-Molecule Accumulation in Gram-Negative Bacteria
革兰氏阴性细菌中小分子积累的预测模型
- 批准号:
10460988 - 财政年份:2018
- 资助金额:
$ 123.93万 - 项目类别:
Predictive Models for Small-Molecule Accumulation in Gram-Negative Bacteria
革兰氏阴性细菌中小分子积累的预测模型
- 批准号:
9761970 - 财政年份:2018
- 资助金额:
$ 123.93万 - 项目类别:
Predictive Models for Small-Molecule Accumulation in Gram-Negative Bacteria
革兰氏阴性细菌中小分子积累的预测模型
- 批准号:
9982190 - 财政年份:2018
- 资助金额:
$ 123.93万 - 项目类别:
Tri-Institutional PhD Program in Chemical Biology
化学生物学三机构博士项目
- 批准号:
9306134 - 财政年份:2015
- 资助金额:
$ 123.93万 - 项目类别:
Tri-Institutional PhD Program in Chemical Biology
化学生物学三机构博士项目
- 批准号:
8935325 - 财政年份:2015
- 资助金额:
$ 123.93万 - 项目类别:
Tri-Institutional PhD Program in Chemical Biology
化学生物学三机构博士项目
- 批准号:
9098769 - 财政年份:2015
- 资助金额:
$ 123.93万 - 项目类别:
Rational Design of Adenylation Enzyme Inhibitors
腺苷酸化酶抑制剂的合理设计
- 批准号:
8675862 - 财政年份:2012
- 资助金额:
$ 123.93万 - 项目类别:
Small Molecule Inhibitors of P. aeruginosa Quinolone (Pqs) Quorum Sensing
铜绿假单胞菌喹诺酮 (Pqs) 群体感应的小分子抑制剂
- 批准号:
8268842 - 财政年份:2012
- 资助金额:
$ 123.93万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 123.93万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 123.93万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 123.93万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 123.93万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 123.93万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 123.93万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 123.93万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 123.93万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 123.93万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 123.93万 - 项目类别:
Research Grant














{{item.name}}会员




